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Abstract. In this paper, we present the formal verification of a Com-
mon Lisp implementation of Buchberger’s algorithm for computing
Gröbner bases of polynomial ideals. This work is carried out in the Acl2
system and shows how verified Computer Algebra can be achieved in an
executable logic.

1 Introduction

Computer Algebra has experienced a great development in the last decade, as
can be seen from the proliferation of Computer Algebra Systems (CAS). These
systems are the culmination of theoretical results obtained in the last half cen-
tury. One of the main achievements is due to B. Buchberger. In 1965 he devised
an algorithm for computing Gröbner bases of multivariate polynomial ideals,
thus solving the ideal membership problem for polynomial rings. Currently, his
algorithm is available in most CAS and its theory, implementation and numerous
applications are widely documented in the literature, e.g. [2, 4].

The aim of this paper is to describe the formal verification of a naive Com-
mon Lisp implementation of Buchberger’s algorithm. The implementation and
formal proofs have been carried out in the Acl2 system, which consists of a pro-
gramming language, a logic for stating and proving properties of the programs,
and a theorem prover supporting mechanized reasoning in the logic.

The importance of Buchberger’s algorithm in Computer Algebra justifies on
its own the effort of obtaining a formal correctness proof with a theorem prover,
and this is one of the motivations for this work. Nevertheless, this goal has
already been achieved by L. Théry in [13], where he gives a formal proof using
the Coq system and explains how an executable implementation in the Ocaml
language is extracted from the algorithm defined in Coq. In contrast, in Acl2
we can reason directly about the Lisp program implementing the algorithm, i.e.
about the very program which is executed by the underlying Lisp system. There
is a price to pay: the logic of Acl2 is a quantifier-free fragment of first-order
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logic, less expressive1 than the logic of Coq, which is based on type theory. We
show how it is possible to formalize all the needed theory within the Acl2 logic.

The formal proofs developed in Acl2 are mainly adapted from Chap. 8 of [1].
As the whole development consists of roughly one thousand Acl2 theorems and
function definitions, we will only scratch its surface presenting the main results
and a sketch of how the pieces fit together. We will necessarily omit many details
that, we expect, can be inferred from the context.

2 The Acl2 System

Acl2 formalizes an applicative subset of Common Lisp. In fact, the same lan-
guage, based on prefix notation, is used for writing Lisp code and stating the-
orems about it2. The logic is a quantifier-free fragment of first-order logic with
equality. It includes axioms for propositional logic and for a number of Lisp
functions and data types. Inference rules include those for propositional calcu-
lus, equality and instantiation (variables in formulas are implicitly universally
quantified). One important inference rule is the principle of induction, that per-
mits proofs by well-founded induction on the ordinal ε0 (the logic provides a
constructive definition of the ordinals up to ε0).

By the principle of definition new function definitions are admitted as axioms
(using defun) only if its termination is proved by means of an ordinal measure
in which the arguments of each recursive call, if any, decrease. In addition, the
encapsulation principle allows the user to introduce new function symbols (using
encapsulate) that are constrained to satisfy certain assumptions. To ensure that
the constraints are satisfiable, the user must provide a witness function with the
required properties. Within the scope of an encapsulate, properties stated as
theorems need to be proved for the witnesses; outside, these theorems work as as-
sumed axioms. Together, encapsulation and the derived inference rule, functional
instantiation, provide a second-order aspect [5, 6]: theorems about constrained
functions can be instantiated with function symbols if they are proved to have
the same properties.

The Acl2 theorem prover mechanizes the logic, being particularly well suited
for obtaining automated proofs based on simplification and induction. Although
the prover is automatic in the sense that once a proof attempt is started (with
defthm) the user can no longer interact, nevertheless it is interactive in a deeper
sense: usually, the role of the user is to lead the prover to a preconceived hand-
proof, by proving a suitable collection of lemmas that are used as rewrite rules
in subsequent proofs (these lemmas are usually discovered by the user after the
inspection of failed proofs). We used this kind of interaction to obtain the formal
proofs presented here. For a detailed description of Acl2, we refer the reader to
the Acl2 book [5].
1 Nevertheless, the degree of automation of the Acl2 theorem prover is higher than

in other systems with more expressive logics.
2 Although we are aware that prefix notation may be inconvenient for people not used

to Lisp, we will maintain it to emphasize the use of a real programming language.
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3 Polynomial Rings and Ideals

Let R = K[x1, . . . , xk] be a polynomial ring on an arbitrary commutative field
K, where k ∈ IN. The elements of R are polynomials in the indeterminates
x1, . . . , xk with the coefficients in K. Polynomials are built from monomials of
R, that is, power products like c · xa1

1 · · ·xak

k , where c ∈ K is the coefficient,
xa1

1 · · ·xak

k is the term, and a1, . . . , ak ∈ IN.
Therefore, there are several algebraic structures that it is necessary to for-

malize prior to the notion of polynomial. A computational theory of multivariate
polynomials on a coefficient field was developed in [8, 9]. This Acl2 formaliza-
tion includes common operations and fundamental properties establishing a ring
structure. The aim was to develop a reusable library on polynomials.

Regarding polynomial representation, we have used a sparse, normalized and
uniform representation. That is, having fixed the number of variables, a canoni-
cal form can be associated to each polynomial. In this canonical representation
all monomials are arranged in a strictly decreasing order, there are no null mono-
mials and all of them have the same number of variables. The main advantage
of this representation arises when deciding equality [9].

Monomial lists are used as the internal representation of polynomials. Mono-
mials are also lists consisting of a coefficient and a term. Having selected a set
of variables and an ordering on them, each term is uniquely represented by a
list of natural numbers. Although most of the theory is done for an arbitrary
field, via the encapsulation principle, we use polynomials over the field of rational
numbers for our implementation of Buchberger’s algorithm. This alleviates some
proofs at the cost of some generality, as Acl2 can use its built-in linear arith-
metic decision procedure. In any case, the general theory has to be eventually
instantiated to obtain an executable algorithm.

The functions k-polynomialp and k-polynomialsp recognize polynomials
and polynomial lists (with k variables and rational coefficients). Analogously,
+, *, - and |0| stand for polynomial addition, multiplication, negation and
the zero polynomial. Let us now introduce the notion of ideal, along with the
formalization of polynomial ideals in Acl2.

Definition 1. I ⊆ R is an ideal of R if it is closed under addition and under
the product by elements of R.

Definition 2. The ideal generated by B ⊆ R, denoted as 〈B〉, is the set of linear
combinations of B with coefficients in R. We say that B is a basis of I ⊆ R if
I = 〈B〉. An ideal is finitely-generated if it has a finite basis.

Hilbert’s Basis Theorem implies that every ideal in K[x1, . . . , xk] is finitely-
generated, if K is a field. Polynomial ideals can be expressed in Acl2 by taking
this into account. Let C and F be lists of polynomials. The predicate p ∈ 〈F 〉
can be restated as ∃C p = lin-comb(C, F ), where lin-comb is a recursive function
computing the linear combination of the elements in F with coefficients in C.

As Acl2 is a quantifier-free logic we use a common trick: we introduce a
Skolem function assumed to return a list of coefficients witnessing the ideal
membership. In Acl2 this can be expressed in the following way:
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(defun-sk<k> in<> (p F)

(exists (C) (and (k-polynomialsp C) (equal p (lin-comb C F)))))

The use of exists in this definition is just syntactic sugar. Roughly speaking,
the above construction introduces a Skolem function in<>-witness, with argu-
ments p and F, which is axiomatized to choose, if possible, a list C of polynomial
coefficients such that when linearly combined with the polynomials in F, p is ob-
tained. Thus, C is a witness of the membership of p to the ideal generated by F,
and in<> is defined by means of in<>-witness. The following theorems establish
that our definition of ideal in Acl2 meets the intended closure properties:

(defthm |p in <F> & q in <F> => p + q in <F>|

(implies (and (k-polynomialp p) (k-polynomialp q) (k-polynomialsp F))

(implies (and (in<> p F) (in<> q F)) (in<> (+ p q) F))))

(defthm |q in <F> => p * q in <F>|

(implies (and (k-polynomialp p) (k-polynomialp q) (k-polynomialsp F))

(implies (in<> q F) (in<> (* p q) F))))

Whenever a theorem about in<> is proved we have to provide Acl2 with
a hint to construct the necessary witness. For example, to prove that polyno-
mial ideals are closed under addition we straightforwardly built an intermediate
function computing the witness of p+q ∈ 〈F 〉 from those of p ∈ 〈F 〉 and q ∈ 〈F 〉.
Definition 3. The congruence induced by an ideal I, written as ≡I , is defined
by p ≡I q ⇐⇒ p− q ∈ I.

The definition of ≡〈F 〉 in Acl2 is immediate3:

(defun<k> =<> (p q F)

(in<> (+ p (- q)) F))

Clearly, the ideal membership problem for an ideal I is solvable if, and only
if, its induced congruence ≡I is decidable. Polynomial reductions will help us to
design decision procedures for that congruence.

4 Polynomial Reductions

Let <M be a well-founded ordering on monomials, p 	= 0 a polynomial and let
lm(p) denote the leader monomial of p with respect to <M .

Definition 4. Let f 	= 0 be a polynomial. The reduction relation on polynomi-
als induced by f , denoted as →f , is defined such that p →f q if p contains a
monomial m 	= 0 such that there exists a monomial c such that m = −c · lm(f)
and q = p + c · f . If F = {f1, . . . , fk} is a finite set of polynomials, then the
reduction relation induced by F is defined as →F =

⋃k
i=1 →fi .

3 For the sake of readability, we use defun-sk<k> and defun<k>, instead of defun-sk
and defun. These are just macros which add an extra parameter k (the number of
variables) to a function definition, so we do not have to specify it in each function
application. When k is not involved, defun is used.
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We have formalized polynomial reductions in the framework of abstract re-
ductions developed in [11]. This approach will allow us to export, by functional
instantiation, well-known properties of abstract reductions (for example, New-
man’s lemma) to the case of polynomial reductions, avoiding the need to prove
them from scratch.

In [11], instead of defining reductions as binary relations, they are defined as
the action of operators on elements, obtaining reduced elements. More precisely,
the representation of a reduction relation requires defining three functions:

1. A unary predicate specifying the domain where the reduction is defined. In
our case, polynomials, as defined by the function k-polynomialp.

2. A binary function, reduction, computing the application of an operator to
a polynomial. In our case, operators are represented by structures 〈m, c, f〉
consisting of the monomials m and c, and the polynomial f appearing in the
definition of the polynomial reduction relation (Def. 4).

3. A binary predicate checking whether the application of a given operator to
a given object is valid. The application of an operator 〈m, c, f〉 to p is valid
if p is a polynomial containing the monomial m, f 	= 0 is a polynomial in
F and c = −m/lm(f). Notice that the last requirement implies that lm(f)
must divide m. This validity predicate is implemented by a function validp.

These functions are just what we need to define in Acl2 all the concepts
related to polynomial reductions. Let us begin defining ↔F (the symmetric clo-
sure of →F ). We need the notion of proof step to represent the connection of
two polynomials by the reduction relation, in either direction (direct or inverse).
Each proof step is a structure consisting of four fields: a boolean field mark-
ing the step direction, the operator applied, and the elements connected (elt1,
elt2). A proof step is valid if one of its elements is obtained by a valid applica-
tion of its operator to the other element in the specified direction. The function
valid-proof-stepp (omitted here), checks the validity of a proof step.

The following function formalizes in Acl2 the relation ↔F . Note that due
to the absence of existential quantification, the step argument is needed to
explicitly introduce the proof step justifying that p↔F q.

(defun <-> (p q step F)

(and (valid-proof-stepp step F)

(equal p (elt1 step)) (equal q (elt2 step))))

Next, we define ∗↔F (the equivalence closure of →F ). This can be described
by means of a sequence of concatenated proof steps, which we call a proof 4. Note
that again due to the absence of existential quantification, the proof argument
explicitly introduces the proof steps justifying that p

∗↔F q.

(defun <->* (p q proof F)

(if (endp proof)

4 Notice that the meaning of the word “proof” here is different than in the expression
“Acl2 proof”. This proof is just a sequence of reduction steps. In fact, we are
formalizing an algebraic proof system inside Acl2.
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(and (equal p q) (k-polynomialp p))

(and (k-polynomialp p)

(<-> p (elt2 (first proof)) (first proof) F)

(<->* (elt2 (first proof)) q (rest proof) F))))

In the same way, we define the relation→∗
F (the transitive closure of→F ), by

a function called ->* (in this case, we also check that all proof steps are direct).
The following theorems establish that the congruence ≡〈F 〉 is equal to the

equivalence closure ∗↔F . This result is crucial to connect the results about re-
duction relations to polynomial ideals.

(defthm |p =<F> q => p <->F* q|

(let ((proof (|p =<F> q => p <->F* q|-proof p q F)))

(implies (and (k-polynomialp p) (k-polynomialp q) (k-polynomialsp F)

(=<> p q F))

(<->* p q proof F)))

(defthm |p <->F* q => p =<F> q|

(implies (and (k-polynomialp p) (k-polynomialp q) (k-polynomialsp F)

(<->* p q proof F))

(=<> p q F)))

These two theorems establish that it is possible to obtain a sequence of proof
steps justifying that p

∗↔F q from a list of coefficients justifying that p−q ∈ 〈F 〉,
and vice versa. The expression (|p =<F> q => p <->F* q|-proof p q F) ex-
plicitly computes such proof, in a recursive way. This is typical in our develop-
ment: in many subsequent Acl2 theorems, the proof argument in <->* or ->*
will be locally-bound (through a let or let* form) to a function computing
the necessary proof steps. As these functions are rather technical and it would
take long to explain them, we will omit their definitions. But it is important to
remark this constructive aspect of our formalization.

Next, we proceed to prove the Noetherianity of the reduction relation. In the
sequel, < represents the polynomial ordering whose well-foundedness was proved
in [9]5. This ordering can be used to state the Noetherianity of the polynomial
reduction. For this purpose, it suffices to prove that the application of a valid
operator to a polynomial produces a smaller polynomial with respect to this
well-founded relation:

(defthm |validp(p, o, F) => reduction(p, o) < p|

(implies (and (k-polynomialp p) (k-polynomialsp F))

(implies (validp p o F) (< (reduction p o) p))))

As a consequence of Noetherianity we can define the notion of normal form.

Definition 5. A polynomial p is in normal form or is irreducible w.r.t. →F if
there is no q such that p→F q. Otherwise, p is said to be reducible. A polynomial
q is a normal form of p w.r.t. →F if p→∗

F q and q is irreducible w.r.t. →F .

5 As it is customary in Acl2, this is proved by means of an ordinal embedding into ε0.
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The notion of normal form of a polynomial can be easily defined in our
framework. First, we define a function reducible, implementing a reducibility
test: when applied to a polynomial p and to a list of polynomials F, it returns
a valid operator, whenever it exists, or nil otherwise. The following theorems
state the main properties of reducible:

(defthm |reducible(p, F) => validp(p, reducible(p, F), F)|

(implies (reducible p F)

(validp p (reducible p F) F)))

(defthm |~reducible(p, F) => ~validp(p, o, F)|

(implies (not (reducible p F))

(not (validp p o F))))

Now it is easy to define a function nf that computes a normal form of a given
polynomial with respect to the reduction relation induced by a given list of poly-
nomials. This function is simple: it iteratively tests reducibility and applies valid
operators until an irreducible polynomial is found. Note that termination is guar-
anteed by the Noetherianity of the reduction relation and the well-foundedness
of the polynomial ordering.

(defun<k> nf (p F)

(if (and (k-polynomialp p) (k-polynomialsp F))

(let ((red (reducible p F)))

(if red (nf (reduction p red) F) p))

p))

The following theorems establish that, in fact, nf computes normal forms.
Again, in order to prove that p→∗

F nf F (p), we have to explicitly define a func-
tion |p ->F* nf(p, F)|-proof which construct a proof justifying this. This
function is easily defined by collecting the operators returned by reducible.

(defthm |p ->F* nf(p, F)|

(let ((proof (|p ->F* nf(p, F)|-proof p F)))

(implies (and (k-polynomialp p) (k-polynomialsp F))

(->* p (nf p F) proof F))))

(defthm |nf(p, F) irreducible|

(implies (and (k-polynomialp p) (k-polynomialsp F))

(not (validp (nf p F) o F))))

Although nf is suitable for reasoning about normal form computation, it is
not suitable for being used by an implementation of Buchberger’s algorithm: for
example, nf explicitly deals with operators, which are a concept of theoretical
nature. At this point, we talk about the polynomial reduction function red∗

F

used in Buchberger’s algorithm. This function (whose definition we omit) do not
make any use of operators but is modeled from the closure of the set extension
of another function, red , which takes two polynomials as its input and returns
the result of reducing the first polynomial with respect to the second one. The
following theorem shows the equivalence between nf F and red∗

F :
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(defthm |nf(p, F) = red*(p, F)|

(implies (and (k-polynomialp p) (k-polynomialsp F))

(equal (nf p F) (red* p F))))

With this result, we can translate all the properties proved about nf to red*.
This is typical in our formalization: we use some functions for reasoning, and
other functions for computing, translating the properties from one to another by
proving equivalence theorems. For example, we proved the stability of the ideal
with respect to red* using this technique.

5 Gröbner Bases

The computation of normal forms with respect to a given ideal can be seen as a
generalized polynomial division algorithm, and the normal form computed as the
“remainder” of that division. The ideal membership problem can be solved taking
this into account: compute the normal form and check for the zero polynomial.
Unfortunately, it is possible that, for a given basis F , a polynomial in 〈F 〉 cannot
be reduced to the zero polynomial. This is where Gröbner bases come into play:

Definition 6. G is a Gröbner basis of the ideal generated by F if 〈G〉 = 〈F 〉
and p ∈ 〈G〉 ⇐⇒ p→∗

G 0.

The key point in Buchberger’s algorithm is that the property of being a
Gröbner basis can be deduced by only checking that a finite number of polyno-
mials (called s-polynomials) are reduced to zero:

Definition 7. Let p and q be polynomials. Let m, m1 and m2 be monomials such
that m = lcm(lm(p), lm(q)) and m1 · lm(p) = m = m2 · lm(q). The s-polynomial
induced by p and q is defined as s-poly(p, q) = m1 · p−m2 · q
Theorem 1. Let Φ(F ) ≡ ∀p, q ∈ F s-poly(p, q) →∗

F 0. The reduction induced
by F is locally confluent if Φ(F ) is verified. That is:

Φ(F ) =⇒ ∀p, q, r (r →F p ∧ r →F q =⇒ ∃s (p→∗
F s ∧ q →∗

F s))

This theorem was the most difficult to formalize and prove in our work. First,
note that it cannot be stated as a single theorem in the quantifier-free Acl2 logic,
due to the universal quantifier in its hypothesis, Φ(F ). For this reason, we state
its hypothesis by the following encapsulate (we omit the local witnesses and
some nonessential technical details):

(encapsulate

((F () t) (s-polynomial-proof (p q) t))

· · ·
(defthm |Phi(F)|

(let ((proof (s-polynomial-proof p q)))

(and (k-polynomials (F))

(implies (and (in<> p (F)) (in<> q (F)))

(->* (s-poly p q) (|0|) proof (F)))))
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The first line of this encapsulate presents the signature of the functions it in-
troduces, and the theorem inside can be seen as an assumed property about these
functions. In this case, we are assuming that we have a list of polynomials given
by the 0-ary function F, with the property that every s-polynomial formed with
pairs of elements of (F) is reduced to (|0|). This reduction is justified by a func-
tion s-polynomial-proof computing the corresponding sequence of proof steps
representing the reduction to (|0|). We insist that F and s-polynomial-proof
are not completely defined: we are only assuming |Phi(F)| about them.

Now, the conclusion of Th. 1 is established as follows:

(defthm |Phi(F) => local-confluence(->F)|

(let ((proof2 (transform-local-peak-F proof1)))

(implies (and (k-polynomial p) (k-polynomial q)

(<->* p q proof1 (F)) (local-peakp proof1))

(and (<->* p q proof2 (F)) (valleyp proof2)))))

This theorem needs some explanation. Note that local confluence can be
reformulated in terms of the “shape” of the involved proofs: a reduction is
locally confluent if, and only if, for every local peak proof (that is, of the
form p ← r → q) there exists an equivalent valley proof (that is, of the form
p

∗→ s
∗← q). It is easy to define in Acl2 the functions local-peakp and valleyp,

checking those shapes of proofs. Note that again due to the absence of existen-
tial quantification, the valley proof in the above theorem is given by a function
transform-local-peak-F, such that from a given local peak proof, it computes
an equivalent valley proof. The definition of this function is very long and follows
the same case distinction as in the classical proof of this result; only in one of
its cases (the one dealing with “overlaps”), s-polynomial-proof is used as an
auxiliary function, reflecting in this way where the assumption about Φ(F ) is
necessary.

The last step in this section follows from general results of abstract reduction
relations. In particular, if a reduction is locally confluent and Noetherian then
its induced equivalence can be decided by checking if normal forms are equal.
This has been proved in Acl2 [11] as a consequence of Newman’s lemma, also
proved there. We can reuse this general result by functional instantiation and
obtain an Acl2 proof of the fact that, if Φ(F ), p

∗↔F q ⇐⇒ nf F (p) = nf F (q).
With this result, and using the equality between nf F and red∗

F , and the
equality between ≡〈F 〉 and ∗↔F , it can be easily deduced that if Φ(F ) then F is
a Gröbner basis (of 〈F 〉). This is established by the following theorem (notice
that (F) is still the list of polynomials assumed to have property Φ by the above
encapsulate):

(defthm |Phi(F) => (p in <F> <=> red*(p, F) = 0)|

(implies (k-polynomial p)

(iff (in<> p (F)) (equal (red* p (F)) (|0|)))))

6 Buchberger’s Algorithm

Buchberger’s algorithm obtains a Gröbner basis of a given finite set of polyno-
mials F by the following procedure: if there is a s-polynomial of F such that its
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normal form is not zero, then this normal form can be added to the basis. This
makes it reducible to zero (without changing the ideal), but new s-polynomials
are introduced that have to be checked. This completion process is iterated until
all the s-polynomials of the current basis are reducible to zero.

In order to formalize an executable implementation of Buchberger’s algorithm
in Acl2, several helper functions are needed. The function initial-pairs re-
turns all the ordered pairs from the elements of a list. The main function com-
putes the initial pairs from a basis and starts the real computation process.

(defun Buchberger (F)

(Buchberger-aux F (initial-pairs F)))

Next, the function that computes a Gröbner basis from an initial basis is
defined. This function takes the initial basis and a list of pairs as its input. The
function pairs returns the ordered pairs built from its first argument and every
element in its second argument. As all Acl2 functions must be total and we
need to deal with polynomials with a fixed set of variables to ensure termination
of the function, we have to explicitly check that the arguments remain in the
correct domain. We will comment more about these “type conditions” in Sect. 7.

(defun<k> Buchberger-aux (F C)

(if (and (naturalp k) (k-polynomialsp F) (k-polynomial-pairsp C))

(if (endp C)

F

(let* ((p (first (first C))) (q (second (first C)))

(h (red* (s-poly p q) F)))

(if (equal h (|0|))

(Buchberger-aux F (rest C))

(Buchberger-aux (cons h F) (append (pairs h F) (rest C))))))

F))

A measure has to be supplied to prove the termination of the above function,
so that it can be admitted by the principle of definition. The following section
explains this issue.

6.1 Termination

Termination of Buchberger’s algorithm can be proved using a lexicographic mea-
sure on its arguments. This is justified by the following observations:

1. In the first recursive branch, the first argument keeps unmodified while the
second argument structurally decreases since one of its elements is removed.

2. In the second recursive branch, the first argument decreases in a certain
well-founded sense despite of the inclusion of a new polynomial. This is a
consequence of Dickson’s lemma.

Lemma 1 (Dickson). Let k ∈ IN and m1, m2, . . . an infinite sequence of mono-
mials with k variables. Then, there exist indices i < j such that mi divides mj.
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If we consider the sequence of terms consisting of the leader terms of the
polynomials added to the first argument, Dickson’s lemma implies termination
of Buchberger’s algorithm. This is because the polynomial added to the basis,
h, is not 0 and it cannot be reduced by F . Consequently, its leader term is not
divisible by any of the leader terms of the polynomials in F .

Dickson’s lemma has been formalized in Acl2 in [7] and [12]. In both cases
it has been proved by providing an ordinal measure on finite sequences of terms
such that this measure decreases every time a new term not divisible by any of
the previous terms in the sequence is added.

We have defined a measure along these lines to prove the termination of
Buchberger’s algorithm. In fact, our measure is defined on top of the measures
used to prove Dickson’s lemma in [7, 12], lexicographically combined with the
length of the second argument. Although both proofs of Dickson’s lemma are
based on totally different ideas, the results obtained can be used interchangeably
in our formalization.

6.2 Partial Correctness

In order to show that Buchberger computes a Gröbner basis, and taking into ac-
count the results of the previous section, we just have to prove that p ∈ 〈F 〉 ⇐⇒
p ∈ 〈Buchberger (F )〉 and that Buchberger (F ) satisfies Φ. The following Acl2
theorems establish these two properties:

(defthm |<Buchberger(F)> = <F>|

(implies (and (k-polynomialp p) (k-polynomialsp F))

(iff (in<> p (Buchberger F)) (in<> p F))))

(defthm |Phi(Buchberger(F))|

(let ((G (Buchberger F)) (proof (|Phi(Buchberger(F))|-proof p q F)))

(implies (and (k-polynomialp p) (k-polynomialp q) (k-polynomialsp F)

(in<> p G) (in<> q G))

(->* (s-poly p q) (|0|) proof G))))

The statement of this last theorem deserves some comments. Our Acl2 for-
mulation of Th. 1 defines the property Φ(F ) as the existence of a function such
that for every s-polynomial of F , it computes a sequence of proof steps justi-
fying its reduction to (|0|) (assumption |Phi(F)| in the encapsulate of the
previous section). Thus, if we want to establish the property Φ for a particular
basis (the basis returned by Buchberger in this case), we must explicitly define
such function and prove that it returns the desired proofs for every s-polynomial
of the basis. In this case the function is called |Phi(Buchberger(F))|-proof.
For the sake of brevity, we omit the definition of this function, but it is very
interesting to point out that it is based in a recursion scheme very similar to
the recursive definition of Buchberger-aux. This function collects, every time a
new s-polynomial is examined, the corresponding proof justifying its reduction
to the zero polynomial.
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6.3 Deciding Ideal Membership

Finally, we can compile the results above to define a decision procedure for ideal
membership. This procedure just checks whether a given polynomial reduces to
0 with respect to the Gröbner basis returned by Buchberger’s algorithm.

(defun<k> imdp (p F)

(equal (red* p (Buchberger F)) (|0|)))

Theorem 2. G = Buchberger(F ) =⇒ (p ∈ 〈F 〉 ⇐⇒ red∗
G(p) = 0).

The Acl2 theorem stating the soundness and completeness of the decision
procedure follows, as an easy consequence of the correctness of Buchberger and
the theorem |Phi(F) => (p in <F> <=> red*(p, F) = 0)| in Sect. 5.

(defthm |p en <F> <=> imdp(p, F)|

(implies (and (k-polynomialp p) (k-polynomialsp F))

(iff (in<> p F) (imdp p F))))

In this context, the theorem |Phi(F) => (p in <F> <=> red*(p, F) = 0)|
is used by functional instantiation, replacing F by (lambda () (Buchberger F))
and s-polynomial-proof by |Phi(Buchberger(F))|-proof.

Note that all the functions used in the definition of the decision procedure are
executable and therefore the procedure is also executable. Note also that we do
not mention operators or proofs, neither when defining the decision procedure
nor when stating its correctness. These are only intermediate concepts, which
make reasoning more convenient.

7 Conclusions

We have shown how it is possible to use the Acl2 system in the formal develop-
ment of Computer Algebra algorithms by presenting a verified implementation
of Buchberger’s algorithm and a verified decision procedure for the ideal mem-
bership problem. It is interesting to point out that all the theory needed to prove
the correctness of the algorithm has been developed in the Acl2 logic, in spite
of its (apparently) limited expressiveness.

We have benefited from work previously done in the system. In particular,
all the results about abstract reductions were originally developed for a formal-
ization of rewriting systems [11]. We believe that this is a good example of how
seemingly unrelated formalizations can be reused in other projects, provided the
system offers a minimal support for it. However, we feel that Acl2 could be
improved to provide more comfortable mechanisms for functional instantiation
and for abstraction in general. Encapsulation provides a good abstraction mech-
anism but functionally instantiating each encapsulated theorem is a tedious and
error-prone task. Recently, several proposals have been formulated (e.g. poly-
morphism and abstract data types) to cope with this problem in Acl2 6. A
graphical interface to visualize proof trees would be helpful too.
6 A similar modularity issue has been reported in the Coq system too [13].
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Little work has been done on the machine verification of Buchberger’s al-
gorithm. As we mentioned in the introduction, the most relevant is the work
of L. Théry [13] in Coq. T. Coquand and H. Persson [3] report an incomplete
integrated development in Martin-Löf’s type theory using Agda. There is also a
Mizar project [10] to formalize Gröbner bases. The main difference between our
approach and these works is the underlying logic. All these logics are very differ-
ent from Acl2, which is more primitive, basically an untyped and quantifier-free
logic of total recursive functions, and makes no distinction between the program-
ming and the specification languages. In exchange, a high degree of automation
can be achieved and executability is obtained for free.

We think that an advantage of our approach is that the implementation
presented is compliant with Common Lisp, a real programming language, and
can be directly executed in Acl2 or in any compliant Common Lisp. This is
not the case of other systems, where the logic is not executable at all or the code
has to be extracted by unverified means. Taking into account that Lisp is the
language of choice for the implementation of CAS, like Macsyma and Axiom,
this is not just a matter of theoretical importance but also a practical one.

Our formal proof differs from Théry’s. First, it is based on [1] instead of [4].
Second, we prove that Φ implies local-confluence instead of confluence: compare
this with the proof of SpolyImpConf in [13]. Differences extend also to defi-
nitions, e.g. ideals and confluence, mainly motivated by the lack of existential
quantification. Finally, [13] uses a non-constructive proof of Dickson’s lemma by
L. Pottier7. Our termination argument uses a proof of Dickson’s lemma obtained
by an ordinal embedding in ε0, the only well-founded structure known to Acl2.

We would like to remark that although polynomial properties seem trivial to
prove, this is not the case [8, 9]. It seems that this is not due to the simplicity
of the Acl2 logic. In [10] the authors recognize that it was challenging to prove
the associativity of polynomial multiplication in Mizar, a system devoted to the
formalization of mathematics. They were amazed by the fact that, in well-known
Algebra treatises, these properties are usually reduced to the univariate case or
their proofs are partially sketched and justified “by analogy”. In some cases,
the proofs are even left as an exercise. In the same way, the author of [13] had
to devote a greater effort to polynomials due to problems arising during their
formalization in Coq.

As for the user interaction required, we provided 169 definitions and 560
lemmas to develop a theory of polynomials (although this includes more than
the strictly needed here) and 109 definitions and 346 lemmas for the theory of
Gröbner bases and Buchberger’s algorithm. All these lemmas are proved almost
automatically. It is worth pointing out that of the 333 lemmas proved by induc-
tion, only 24 required a user-supplied induction scheme. Other lemmas needed a
hint about the convenience of using a given instance of another lemma or keep-
ing a function definition unexpanded. Only 9 functions required a hint for their
termination proofs. Thus, the main role of the user is to provide the suitable
sequence of definitions and lemmas to achieve the final correctness theorem.

7 A new proof of Dickson’s lemma in Coq by H. Persson has been proposed later.
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Théry’s implementation provides some standard optimizations that we do not
include. Regarding future work, we are interested in studying how our verified
implementation could be improved to incorporate some of the refinements built
into the very specialized and optimized (and not formally verified) versions used
in industrial-strength applications. It would be also interesting to use it to verify
some application of Gröbner bases such as those described in [2].

An obvious improvement in the verified implementation is to avoid the “type
conditions” in the body of Buchberger-aux, since these conditions are unnec-
essarily evaluated in every recursive call. But these conditions are needed to
ensure termination. Until Acl2 version 2.7, there was no way to avoid this; but
since the recent advent of Acl2 version 2.8 that is no longer true, since it is
possible for a function to have two different bodies, one used for execution and
another for its logical definition: this is done by previously proving that both
bodies behave in the same way on the intended domain of the function. We plan
to apply this new feature to our definition of Buchberger’s algorithm.
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