
Formal Verification of Molecular Computational
Models in ACL2: A Case Study�

Francisco J. Mart́ın-Mateos, José A. Alonso,
Maria José Hidalgo, and José Luis Ruiz-Reina

Computational Logic Group
Dept. of Computer Science and Artificial Intelligence, University of Seville

E.T.S.I. Informática, Avda. Reina Mercedes, s/n. 41012 Sevilla, Spain
http://www.cs.us.es/{~fmartin,~jalonso,~mjoseh,~jruiz}

Abstract. Theorem proving is a classical AI problem with a broad range
of applications. Since its complexity is exponential in the size of the
problem, many methods to parallelize the process has been proposed.
One of these approaches is based on the massive parallelism of molecular
reactions. ACL2 is an automated theorem prover especially adequate for
algorithm verification. In this paper we present an ACL2 formalization
of a molecular computational model: Adleman’s restricted model. As
an application of this model, an implementation of Lipton’s experiment
solving SAT is described. We use ACL2 to make a formal proof of the
completeness and soundness properties of this implementation.

1 Introduction

In the last years the interest in developing new computational models based
on biological models has increased [2, 13]. One of the main advantages of these
models is the massive parallelism associated with some process. This reduces
considerably the complexity of some problems (with respect to the elemental
operations in the model). However, the biological implementation of these models
is not often possible and, when it can be done, the cost of the experiments could
force to increase our confidence in their correction.

ACL2 [7] is a programming language, a logic for reasoning about programs
in the language, and a theorem prover supporting formal reasoning in the logic.
Automated reasoning systems in general and ACL2 in particular, are usually
used to build formal models of “digital systems”, software and hardware [9, 15].
Using the proof techniques of these systems, we can prove properties of the
formalized models. In this paper, we present an application of the ACL2 system
to formalize and verify computational models based on biological models. In
particular, we formalize a molecular computational model and one of the first
biological experiment solving a NP-complete problem.

Adleman’s first experiment [1] shows that NP-complete problems could be
solved by means of manipulation of DNA molecules. Based on Adleman’s ideas,
� This work has been supported by project TIC2000-1368-C03-02 (Ministry of Science

and Technology, Spain), cofinanced by FEDER funds.

R. Conejo et al. (Eds.): CAEPIA-TTIA 2003, LNAI 3040, pp. 344–353, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



Formal Verification of Molecular Computational Models in ACL2 345

R.J. Lipton [11] solved an instance of the satisfiability propositional problem.
In this sense, new experiments has been done recently [3, 10]. In this paper
we present our ACL2 formalization of Adleman’s restricted model. This for-
malization is done in such a way that the subsequent development is generic:
the specific operations are not important, but only their properties. In [14] a
formalization of Lipton’s experiment is given as an iterative algorithm based
on the elemental operations of Adleman’s restricted model. We define recursive
functions implementing this formalization and we prove the completeness and
soundness properties of these functions.

2 The ACL2 System

ACL2 [7] is a programming language, a logic for reasoning about programs in
the language, and a theorem prover supporting formal reasoning in the logic.
The ACL2 logic is a quantifier-free, first-order logic with equality, describing an
extension of an applicative subset of Common Lisp. The syntax of terms is that
of Common Lisp and the logic includes axioms for propositional logic and for a
number of Lisp functions and data types. Rules of inference of the logic include
those for propositional calculus, equality and instantiation. The ACL2 theorem
prover mechanizes that logic, being particularly well suited for obtaining autom-
atized proofs based on simplification and induction. For a detailed description
of ACL2, we refer the reader to the book [6].

By the principle of definition, new function definitions are admitted as ax-
ioms only if there exists a measure in which the arguments of each recursive call
decrease with respect to a well-founded relation, ensuring in this way that no in-
consistencies are introduced by new definitions. Some higher order functionality
is provided by means of the encapsulate mechanism [8] which allows the user
to introduce new function symbols by axioms constraining them to have certain
properties (to ensure consistency, a witness local function having the same prop-
erties has to be exhibited). Inside an encapsulate, the properties stated need
to be proved for the local witnesses, and outside, they work as assumed axioms.
This mechanism behaves like an universal quantifier over a set of functions ab-
stractly defined with it. So, any theorem proved about these functions is true
for any functions with the same properties as the assumed in the encapsulate.

The user can start a proof attempt invoking the defthm command establish-
ing the property she wants to prove. The ACL2 theorem prover is automatic in
the sense that once defthm is invoked, the user can no longer interact with the
system. However, the user can (and usually must) guide the prover by adding
lemmas and definitions that are used in subsequent proofs as rewriting rules. A
typical ACL2 proof effort consists of formalizing the problem in the logic and
helping the prover to find a preconceived proof by means of a suitable set of
rewriting rules. These rules can be found by inspecting the failed proofs. That
is the methodology we followed in this case study.

For the sake of readability, the ACL2 expressions in this paper are presented
using a notation closer to the usual mathematical notation than its original



346 Francisco J. Mart́ın–Mateos et al.

Common Lisp syntax. Some of the functions are also used in infix notation.
The complete files with definitions and theorems are available on the Web in
http://www.cs.us.es/~fmartin/acl2/molecular/.

3 Adleman’s Restricted Model

In [2] some abstract models for molecular computing are described. The first
model proposed works with test tubes with a set of DNA molecules, i.e. a mul-
tiset of finite sequences over the alphabet {A, C, G, T }. Nevertheless, it may be
preferable to use molecules other than DNA, using an alphabet Σ which is not
necessarily {A, C, G, T }. Further, though DNA has a natural structure which
allows to order the occurrence of elements and hence deal with sequences, this
may not be true for other types of molecules. Then, the members of a tube will
be multisets of elements from Σ. In the sequel, we consider an alphabet Σ and
we call aggregate a multiset of elements from this alphabet.

The above considerations are the basis of the restricted model of molecular
computation. This model works on test tubes with a multiset of aggregates
(i.e. a multiset of multisets of elements from Σ). On these tubes, the following
operations can be performed:

– Separate(T, x): Given a tube T and an element x ∈ Σ, produces two new
tubes, +(T, x) and −(T, x), where +(T, x) is the tube consisting of every ag-
gregate of T which contains the element x and −(T, x) is the tube consisting
of every aggregate of T which does not contain the element x:

+(T, x) = {γ ∈ T : x ∈ γ}

−(T, x) = {γ ∈ T : x /∈ γ}
– Merge(T1, T2): Given tubes T1 and T2, produces the new tube T1∪T2, which

is the multiset union of the multisets T1 and T2.
– Detect(T ): Given a tube T , decides if T contains at least one aggregate; that

is, returns “yes” if T contains at least one aggregate and returns “no” if it
contains none.

These operations are performed in the laboratory in the following way. If
a Merge of tubes is required, this is accomplished by pouring the contents of
one of the tubes into the other. If a Separate or a Detect operation is required
on a tube then some technical operations (magnetic bead system, polymerase
chain reaction, get electrophoresis, ...) are performed on it. This model is called
“restricted” in the sense that the molecules themselves do not change in the
course of a computation.

To formalize the restricted model in ACL2, we use lists to represent multisets.
Then, a test tube is represented as a list of aggregates and an aggregate is
represented as a list of elements from Σ. So, the functions associated with the
molecular operations work on lists.



Formal Verification of Molecular Computational Models in ACL2 347

We consider two functions, separate+ and separate-, associated with the
Separate operation. The first one returning the value +(T, x) and the second
one the value −(T, x). The Merge operation is associated with the function
tube-merge. Finally, we consider the function detect associated with the Detect
operation.

The definition of these functions is not so interesting as their properties. The
properties of any algorithm built on the restricted model must be independent
of the implementation of the operations. This will ensure the properties of the
algorithm even when it was evaluated in a molecular laboratory. Therefore, we
define them by means of the encapsulate mechanism, constraining them to
have certain properties. These properties are the following:

Assumption: member-separate+
γ ∈ separate+(T ,x) ↔ x ∈ γ ∧ γ ∈ T

Assumption: member-separate-
γ ∈ separate-(T ,x) ↔ x �∈ γ ∧ γ ∈ T

Assumption: member-tube-merge
γ ∈ tube-merge(T1 ,T2) ↔ γ ∈ T1 ∨ γ ∈ T2

Assumption: member-detect
detect(T ) = t ↔ ∃e ∈ T

If we want to test any algorithm built on the restricted model, we must
provide concrete functions implementing the basic operations and prove the en-
capsulated properties for them. Anyway, introducing these properties by means
of encapsulate, we ensure that the proof of subsequent properties are indepen-
dent of these concrete implementations.

4 Lipton’s Experiment

Adleman’s experiment [1] solved an instance of the Hamiltonian path problem
over a directed graph with two designated vertices, by implementing a brute force
procedure in a laboratory of molecular biology. To solve the problem, an initial
test tube with DNA molecules encoding all the paths in the graph was built.
This tube was subjected to some operations based on DNA manipulation, and
every aggregate encoding a path which was not a valid solution of the problem
was removed.

Lipton shows in [11] how to solve an instance of the satisfiability problem for
Propositional Logic, using the ideas of Adleman. To achieve this, he described
every relevant assignment of a propositional formula by means of paths on a
directed graph associated with the variable set of the formula. Specifically, given
a propositional formula in conjunctive normal form, F = c1 ∧ . . .∧ cp, where the
clauses ci = li,1 ∨ . . . ∨ li,ri , and the set of variables V ar(F ) = {x1, . . . , xn}, the
associated directed graph Gn = (Vn, En) is defined as follows:



348 Francisco J. Mart́ın–Mateos et al.

x1
1 x1

2 x1
n−1 x1

n

x0
1 x0

2 x0
n

a1 a2 a3 an−1 an an +1

x0
n−1

Fig. 1. Directed graph associated with a propositional formula with n variables

Vn = {xj
i : 1 ≤ i ≤ n, 0 ≤ j ≤ 1} ∪ {ai : 1 ≤ i ≤ n + 1}

En = {(ai, x
j
i ), (x

j
i , ai+1) : 1 ≤ i ≤ n, 0 ≤ j ≤ 1}

This graph, shown in figure 1, verifies the following properties:

– There are 2n paths from a1 to an+1.
– There exists a natural bijection between the above set of paths and the rele-

vant assignments of F , according to the following criteria: given a path from
a1 to an+1, γ = a1x

j1
1 a2x

j2
2 . . . xjn

n an+1, then the assignment γ̂ is associated
with it, such as γ̂(xi) = ji, 1 ≤ i ≤ n.

The initial test tube contains DNA molecules codifying the paths from a1 to
an+1, and so every relevant assignment of F . The alphabet and the initial test
tube considered are the following:

Σ = {ai, x
j
i , an+1 : 1 ≤ i ≤ n, 0 ≤ j ≤ 1}

T0 = {{a1, x
j1
1 , a2, x

j2
2 , . . . , xjn

n , an+1} : 1 ≤ i ≤ n, ji ∈ {0, 1}}
Lipton’s experiment can be described as follows: for each clause in the ini-

tial formula, every aggregate representing an assignment falsifying this clause is
removed. The way to work with clauses is the following: for each literal in the
clause, every aggregate representing an assignment in which this literal is true is
preserved, and the remaining aggregates are removed. This experiment has been
formalized in [14], where it has been expressed as an iterative algorithm based
on the elemental operations of Adleman’s restricted model:

Input: T0 (as described above)
For i← 1 to p do

Ti,0 ← ∅
T ′′

i,0 ← Ti−1

For j ← 1 to ri do
T ′

i,j ← separate+(T ′′
i,j−1 , l1i,j)

T ′′
i,j ← separate-(T ′′

i,j−1 , l1i,j)
Ti,j ← tube-merge(Ti,j−1 , T ′

i,j)
Ti ← Ti,ri

detect(Tp)

where, for each literal li,j in the initial formula:



Formal Verification of Molecular Computational Models in ACL2 349

l1i,j =
{

x1
m if li,j = xm

x0
m if li,j = ¬xm

In this formalization, the first loop deals with the clauses in the initial for-
mula. The tube T ′′

i,0 is the set of aggregates before processing the clause ci, and
the tube Ti,0 acts as accumulator for the aggregates representing an assignment
making ci true. The second loop deals with the literals in a clause. The aggregates
representing an assignment in which the literal is true (that is, the aggregates
with the element l1i,j) are in the tube T ′

i,j which is merged with the accumulator,
the remaining are in the tube T ′′

i,j which is used with the next literal. When ev-
ery literal in a clause has been processed, the tube Ti,ri contains the aggregates
from the tube T ′′

i,0 representing an assignment making true that clause.
It must be noticed that the complexity of this experiment, with respect to

the basic molecular operations, is O(k), where k is the number of literals. This
low complexity is mainly due to the massive parallelism of molecular reactions.
Of course, our simulation in ACL2 is sequential, and it loses this advantage. The
basic molecular operations (with constant time cost) are performed in ACL2 by
exhaustive analysis, and this dramatically increases the complexity.

Next, we present our implementation of Lipton’s experiment in ACL2. First
of all we must notice that the above algorithm depends on the initial test tube
(T0) and on the propositional formula (F ), by means of the l1i,j . Then, we have
defined a function with two arguments, the formula and the tube. On the other
hand, the iterative formulation presented above is not adequate for its implemen-
tation in the functional language of ACL2. We have made a recursive formulation
equivalent to the iterative version. In fact, we have defined two functions, one
for each loop. The function dealing with the external loop works recursively on
the number of clauses of F , and the other one works recursively on the number
of literals of the selected clause.

Our implementation does not use the Detect operation, instead it returns the
final tube in the external loop (Tp). This is useful to formulate the soundness
and completeness properties of the functions implementing the experiment as
we will show in the next section.

First of all we define the function l-element, that builds the element l1i,j
from the literal li,j . Literals are represented using integers, thus, for all i > 0,
literal xi is represented with the integer i, and ¬xi with −i. To represent the
elements l1i,j we use pairs: the element x0

i is represented with the pair (i . 0)

and the element x1
i with the pair (i . 1).

Definition:
l-element(L) =

if L < 0 then (−L . 0)

else (L . 1)

Next, we define a function implementing the internal loop. Its inputs are a
main tube T (corresponding to T ′′

i,j in the iterative version presented above), an
accumulator tube acc (corresponding to Ti,j) and a clause C (corresponding to
ci). The aggregates in the main tube containing the element l1i,1 are merged with



350 Francisco J. Mart́ın–Mateos et al.

the accumulator tube in a new one. The aggregates in the main tube that do
not contain the element l1i,1 are poured in a new main tube. The new main and
accumulator tubes are used in the recursive call on the rest of the literals:

Definition:
sat-lipton-clause(C,T ,acc) =

if endp(C) then acc
else let* T+ = separate+(T ,l-element(car(C)))

T− = separate-(T ,l-element(car(C)))
Nacc = tube-merge(acc,T+)

in sat-lipton-clause(cdr(C),T− ,Nacc)

The main function deals with the external loop. Its inputs are a tube T
(corresponding to the initial tube T0 in the iterative version presented above)
and a formula F in conjunctive normal form. This function applies the internal
loop on this tube, an initially empty accumulator tube and the first clause of the
formula. The result of this process is used as initial tube in the recursive call on
the rest of clauses:

Definition:
sat-lipton-cnf-formula(F ,T ) =

if endp(F ) then T
else let NT = sat-lipton-clause(car(F ),T ,nil)

in sat-lipton-cnf-formula(cdr(F ),NT )

5 Using ACL2 to Prove Correctness

Once formalized in ACL2 the abstract model with its assumed properties, and
defined the functions implementing the experiment in this formalization, we can
prove in the system the termination, soundness and completeness properties of
these functions. The termination property is straightforward (in the recursive
calls the length of F or C decreases) and it is proved without additional help
from the user. The soundness and completeness properties are the following:

1. Soundness: ∀γ ∈ Tp, (γ̂(F ) = 1)
2. Completeness: ∀γ ∈ T0, (γ̂(F ) = 1 ⇒ γ ∈ Tp)

where F is a propositional formula in conjunctive normal form and γ̂(F ) is the
truth value of F in the assignment γ̂ (the truth value of a formula in conjunctive
normal form is extended as usual).

These properties of the algorithm have two hidden assumptions:

1. F is a formula in conjunctive normal form (cnf-formula-p).
2. γ is an aggregate with the form: {a1, x

j1
1 , a2, x

j2
2 , . . . , xjn

n , an+1}
with 1 ≤ i ≤ n and j ∈ {0, 1}
To deal with the first of these assumptions, we have formalized some con-

cepts related to propositional logic. The functions literal-p, clause-p and



Formal Verification of Molecular Computational Models in ACL2 351

cnf-formula-p characterize respectively literals (non-null integer numbers), cla-
uses (lists of literals) and formulas in conjunctive normal form (lists of clauses).
To represent assignments, we use association lists. In these lists a propositional
variable can have associated any value; if this value is 1, the variable is inter-
preted as true, otherwise it is interpreted as false. The functions literal-value,
clause-value and cnf-formula-value compute respectively the truth value in
an assignment of a literal, clause or formula in conjunctive normal form.

We use lists to represent aggregates in the following way: the aggregate
{a1, x

j1
1 , a2, x

j2
2 , . . . , xjn

n , an+1} is represented by the list

((A . 1) (1 . j1) (A . 2) ... (n . jn) (A . n))

In this way, we use the same expression to represent an aggregate γ and the asso-
ciated assignment γ̂. The pairs (A . i) are ignored when we use this expression
to represent an assignment.

We have checked that the following property is enough to characterize the
aggregates: for each variable xi in the original formula, there must exist one
and only one xj

i in the aggregate1. We have defined three functions checking this
property. The first one (literal-aggregate-p) checks the property with respect
to the variable of a literal, the second one (clause-aggregate-p) with respect
to the variable set of a clause and the third one (cnf-formula-aggregate-p)
with respect to the variable set of a formula in conjunctive normal form. In the
sequel, when we say that γ is an aggregate w.r.t. a literal, a clause or a formula,
we mean that γ is an aggregate with respect to its variable or its variable set.

Now, we can formulate the completeness property:

Theorem: completeness-sat-lipton-cnf-formula
(γ ∈ T ∧ cnf-formula-p(F ) ∧ cnf-formula-aggregate-p(γ,F )

∧ cnf-formula-value(F ,γ) = 1)
→ γ ∈ sat-lipton-cnf-formula(F ,T )

Let us briefly describe the proof process of this theorem. The ACL2 prover
tries to prove it by induction. Based on its heuristics, the system uses the induc-
tion scheme suggested by the function sat-lipton-cnf-formula. This produces
the following subgoals:

1) endp(F ) → P (γ, F, T )
2) ¬endp(F ) ∧ P (γ,cdr(F ),sat-lipton-clause(car(F ),T ,nil)) → P (γ,F, T )

where P (γ, F, T ) denotes the property we want to prove.
As we can see, the first subgoal is straightforward (in this case the value of

sat-lipton-cnf-formula(F ,T ) is T ) and the second one is not easy. Using the
simplification process, the system transforms the second subgoal obtaining the
following:

1 Therefore, the elements ai in the aggregates are not necessary. Nevertheless, we have
to consider them to faithfully reflect the original experiment.



352 Francisco J. Mart́ın–Mateos et al.

(γ ∈ T ∧ consp(F ) ∧ clause-p(C) ∧ cnf-formula-p(F ′)
∧ clause-aggregate-p(γ,C) ∧ cnf-formula-aggregate-p(γ,F ′)
∧ clause-value(C,γ) �= 0 ∧ cnf-formula-value(F ′ ,γ) = 1
∧γ �∈ sat-lipton-clause(C,T ,nil))

→ γ ∈ sat-lipton-cnf-formula(F ,T )

where C is car(F ) and F ′ is cdr(F ).
In a first attempt, the proof of this subgoal fails. Inspecting the failed proof,

we found that a very similar property should be proved about the function
sat-lipton-clause. One possibility is the following:

Theorem: completeness-sat-lipton-clause
(γ ∈ T ∧ clause-p(C) ∧ clause-aggregate-p(γ,C) ∧ clause-value(C,γ) = 1)
→ γ ∈ sat-lipton-clause(C,T ,acc)

Once again, the system tries to prove this theorem using the induction scheme
suggested by the function sat-lipton-clause. Inspecting the proof attempt we
can also conclude that some property about separate+ should be proved. This
property is the following:

Theorem: completeness-separate+
(γ ∈ T ∧ literal-p(L) ∧ literal-aggregate-p(γ,L) ∧ literal-value(L,γ) = 1)
→ γ ∈ separate+(T ,l-element(L))

This theorem is proved using elemental properties about aggregates and their
associated assignments. Using this theorem, the system can prove the complete-
ness property of sat-lipton-clause and, finally, the completeness property of
sat-lipton-cnf-formula.

The proof of the soundness property is obtained in a similar way. The asso-
ciated ACL2 event is the following:

Theorem: soundness-sat-lipton-cnf-formula
(cnf-formula-p(F ) ∧ cnf-formula-aggregate-p(γ,F )

∧γ ∈ sat-lipton-cnf-formula(F ,T ))
→ cnf-formula-value(F ,γ) = 1

6 Conclusions

In this work we have presented a formalization of Adleman’s restricted model,
one of the first molecular computational models. This formalization has been
done in a generic framework in which the concrete implementation of its oper-
ations is not important, but only their properties. Using this formalization we
have defined functions simulating Lipton’s experiment solving SAT. Finally, the
completeness and soundness properties of these functions have been proved.

The formalization of unconventional models of computation is a suitable way
of working with them when we do not have real models (e.g. we do not have
a laboratory implementing molecular computational models). This formaliza-
tion brings us the possibility of simulate real experiments or develop new ones.



Formal Verification of Molecular Computational Models in ACL2 353

Furthermore, using an automated reasoning system allows to formally prove
properties of the simulated experiments. The automatic system helps to develop
these proofs avoiding a hand development.

We have presented a recursive formalization, in opposite to the iterative
version presented in [14]. This fact is due to the applicative nature of ACL2.
This approach suggests the application of proof techniques based on induction (as
usual in ACL2), to prove the correctness properties of the functions simulating
the experiment, as opposed to the needed with an iterative version, based on
Hoare logic. In [5] we have reproduced the development presented here in the
PVS system [12], as part of a project about formal specification of molecular
computational models in this system.

References

1. Adleman, L.M.: Molecular computation of solutions to combinatorial problems.
Science, 266:1021–1024, 1994.

2. Adleman, L.M.: On constructing a molecular computer. DNA Based Computers,
DIMACS Series, 27, pp. 1–21. American Mathematical Society, 1996.

3. Braich, R.S., Chelyapov, N., Johnson, C., Rothemund, P.W.K. and Adleman, L.:
Solution of a 20-Variable 3-SAT Problem on a DNA Computer. Science, 296:499–
502, 2002.

4. Beaver, D.: A universal molecular computer. DNA Based Computers, DIMACS
Series, 27, pp. 29–36. American Mathematical Society, 1996.

5. Graciani, C., Mart́ın–Mateos, F.J. and Pérez–Jiménez, M.J.: Specification of Adle-
man’s Restricted Model Using an Automated Reasoning System: Verification of
Lipton’s Experiment. LNCS vol. 2509 pp. 126–136, 2002.

6. Kaufmann, M., Manolios, P. and Moore, J S.: Computer-Aided Reasoning: An
Approach. Kluwer Academic Publishers, 2000.

7. Kaufmann, M. and Moore, J S.: ACL2 Version 2.7, 2002.
Homepage: http://www.cs.utexas.edu/users/moore/acl2/

8. Kaufmann, M. and Moore, J S.: Structured Theory Development for a Mechanized
Logic. Journal of Automated Reasoning, 26(2): 161–203, 2001.

9. Moore, J S.: Piton: a mechanically verified assembly-level language. Kluwer Aca-
demic Publisher, 1996.

10. Lee, I.-H., Park, J.-Y., Jang, H.-M., Chai, Y.-G. and Zhang, B.-T.: DNA Imple-
mentation of Theorem Proving with Resolution Refutation in Propositional Logic.
LNCS vol. 2568, pp. 156–167, 2003.

11. Lipton, R.J.: DNA solution of hard computational problems. Science, 268:542–545,
1995.

12. Owre, S., Rushby, J.M., Shankar, N. and Stringer–Calvert, D.W.J.: PVS System
Guide. Homepage: http://pvs.csl.sri.com/

13. Paun, G.: Computing with membranes. Journal of Computer and System Sciences,
61(1):108–143, 2000.

14. Pérez–Jiménez, M.J., Sancho, F., Graciani, C. and Romero, A.: Soluciones molecu-
lares del problema SAT (in spanish). Lógica, Lenguaje e Información, JOLL’2000,
pp. 243–252. Ed. Kronos, 2000.

15. Russinoff, D.: A mechanically checked proof of IEEE compliance of the floating
point multiplication, division and square root algorithms of the AMD-K7 processor.
LMS J. of Comp. Math., vol. 1, pp. 148–200, 1998.


	1 Introduction
	2 The ACL2 System
	3 Adleman’s Restricted Model
	4 Lipton’s Experiment
	5 Using ACL2 to Prove Correctness
	6 Conclusions
	References

