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Nowadays, Web-based data management needs tools to ensure secure, trustwor-

thy performance. The utopian future shows a Semantic Web providing depend-

able frameworks that can solve many of today’s data problems. However, the realistic

immediate future raises several challenges, including foundational Semantic Web issues,

the abstract definition of data, and incomplete, evolv-
ing ontologies. In either case, the marriage of data
and ontologies is indissoluble and represents the
knowledge database (KDB), a basic ingredient of the
Semantic Web.

Automated reasoning systems (ARSs) might be
helpful in cleaning KDBs. Because we’re particu-
larly interested in logical reasoning and its robust-
ness for data cleaning and preprocessing, our work
focuses on qualitative KDBs. In this article, we look
closely at problems in data analysis, the first phase
of data cleaning.

Currently, ARSs play the assistant role in an ARS-
aided methodology to clean KDB anomalies.1 The
overall question that it addresses is whether it’s pos-
sible to design trustworthy data-cleaning systems to
certify both the KDB and the reasoning on it, as the
Semantic Web promises. This challenge emphasizes
the current need for explaining the reasoning behind
cleaning programs.

The challenges
The long-term goal for Semantic Web data clean-

ing is to design general-purpose cleaning agents—
intelligent agents that can find and repair both ontol-
ogy and data anomalies in KDBs. To achieve this
goal, we first need to analyze the challenges that this
goal raises.

What is the problem’s logical complexity?
Cleaning KDBs in a dynamic environment such

as the Semantic Web is quite hard. Here are some
reasons:

• We can’t suppose that the KDB is complete. Even
if we have a good KDB, anomalies might arise
again the next time we introduce data. 

• The ontology of the KDB in the Semantic Web is
usually a complex theory, so the classical database
theories (closed-world assumption, unique-names
principle, and domain closure axiom) would likely
become inconsistent. Nevertheless, the KDB itself
represents a real model.

• The KDB doesn’t contain facts about all the rela-
tions in the language. Typically, only nearly com-
plete information about some relations and con-
cepts (perhaps considered the primary ones) is
present. Other complex notions must be deduced.

We obtained this list of reasons by revising the
classical verification and validation problem in the
expert systems field.2 Anomalies might come from
several sources, such as the following:

• The data set might be inconsistent with the ontol-
ogy, owing to formal inconsistencies produced by
wrong data or the absence of some knowledge.

• The database might not give us complete infor-
mation about primary predicates. For example, the
automated theorem prover (ATP) might deduce
the existence of objects whose names aren’t
explicit in the KDB.
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• Answers to standard queries might be dis-
junctive (a logical deficiency).

• The ontology might be inconsistent.

Also, when we work with many informa-
tion sources, to accept the answers computed
from selected resources, we must estimate
the quality of the answer—a potentially crit-
ical task.

This problem forces us to balance real-time
processing and complex reasoning. This
dilemma is, in essence, the same as reactivity
versus proactivity attitudes in agents. The
ARS assistant might need more autonomy to
work with complex logical features, so tightly
constraining the ARS’s processing time isn’t
advisable. Nevertheless, how much autonomy
it needs isn’t clear: an ATP can produce an
overspill of new knowledge, not all of it inter-
esting. So, it needs a strict referee layer to
manage the workflow. This isn’t a new idea in
automated deduction.3 These are the main
drawbacks for integrating an ARS in an agent
architecture. However, losing real-time
requirements might not be important: the sys-
tem could work as a night cleaning service,
debugging metadata the user has imple-
mented during the computer’s idle time.

Another interesting aspect is that some lan-
guages for specifying ontologies (for exam-
ple, KIF, or Knowledge Interchange Format;
http://logic.stanford.edu/kif/kif.html) let us
design syntactically complex theories that can
be hard to manage. Complex axioms in an
ontology description often come from a defi-
cient or inconsistent set of concepts and rela-
tionships. A paradigmatic case is where sev-
eral programmers in a company are developing
an ontology and associated tools while other
programmers are inputting the data. This coop-
erative work could produce inconsistencies or
complex axioms that make the ontology
messy. Finally, mechanisms for evaluating
ontology engineering tasks are sometimes
lacking, preventing their commercial use.4

Finally, providing metadata is a difficult
task that users tend to avoid: to save costs,
they might use an ontology-learning system
to build an initial ontology, but then they’d
have to debug it. An ontological analysis of
the intended meaning of the ontology’s ele-
ments would even be necessary.5 In any case,
it’s necessary to know how to work with poor
(or provisional) ontologies.

How do we work with poor
ontologies?

The problem is partially one of logical rea-

soning with weak theories. We assume that
the Semantic Web’s content is (explicitly or
implicitly) in the form of logical formulas.
From this viewpoint, we think that using
ontologies to manage data implies logical
reasoning that’s deeper than what we believe
is advisable. Ontologies aren’t only logical
theories; they also have additional features
such as backward compatibility.6 Clearly,
however, a primary security criterion for
ontologies is logical trust.

From a logic point of view, data are ground
terms constrained by an ontology language
and, more important, whose behavior is spec-
ified by the ontology. A partially built ontol-
ogy constrains us to reason with a poor lan-
guage or a deficient set of axioms.

Unstable ontologies persist for several rea-
sons. Most ontology research involves devel-
oping representation paradigms rather than
featuresassociatedwithevolutionsuchasper-

sistence, transactions, or scalability.7 Experi-
ence has shown that building a robust ontol-
ogy, including metadata, is expensive. So,
although it’s best to invest that effort in the
early development stages, this impedes sig-
nificant changes later on, due to its high cost.

In ATP-aided cleaning tasks, an interest-
ing reason for bottom-up change generation
in ontologies is Skolem noise (the noise pro-
duced when we work with domain closure
axioms but when the domain knowledge is
not clausal). Figure 1 shows an example of
Skolem noise created by the Otter ATP sys-
tem as it reasons with a poor ontology. The
noise is caused by the analysis of the inter-
action among the user, the KDB, and the
Otter ATP when the user works with provi-
sional ontologies. We can’t wait until the
ontology becomes stable—but at least we
can wait until the meaning of “stable,” “bet-
ter,” or “robust” is clear.
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Reiter's axioms

Database

Spatial  axiom

Query (Otter’s syntax)

Otter's output

all x (P(x,A) → $Ans(x))).

 1 [] x=x.
 5 [] x!=A | y!=S | O(x,y).
 14 [] P($f1(x,y),x) | −O(x,y).
 16 [] −P(x,A) | $Ans(x).
 27 [hyper,5,1,1] O(A,S).
 65 [hyper,14,27] P($f1(A,S),A).
 66 [Binary,65.1,16.1]  $Ans($f1(A,S)). 

Domain closure axiom

Unique-names axiom Completion
axioms

all x y ((exists z (P(z,x) & P(z,y)) ↔ O(x,y)).

regions overlap if they have
some common region. 

Answer with Skolem noise:
The function  $f1(A,S) is not defined.

O(A,S).

all x (x=A | x=S).

A != S.

Database

Anticyclone overlaps Spain,
but there is not a common region

(with name) in the database

all x y (x=A & y=S | x=A & y=A | x=S & y=S |x=S & y=A ↔ O(x,y)).
all x y (x=A & y=S | x=A & y=A | x=S & y=S |x=S & y=A ↔ C(x,y)).

This axiom states that two 

O
P
C

S
A

Overlaps
Be part of
Connection predicate

Spain
Anticyclone

Figure 1. A simple example of Skolem noise created by the Otter system as it reasons
with a poor ontology.



When is an ontology robust?
Ontologies are presumably designed to

protect us from managing information incor-
rectly. But, can we be sure of the current
ontology? Is it possible to predict that only
minor changes will occur? Ontologies must
be maintained just like other parts of a system
(for example, by refinement8 or versioning9).
The definition of ontology robustness has
several perspectives; all are necessary, but
none are sufficient.

From the Semantic Web perspective,
what’s considered essential for robustness
comes from some of the requirements for
exploiting Semantic Web ontologies, mainly
these two:6

• A Semantic Web ontology should be able
to extend other ontologies with new terms
and definitions.

• An ontology’s revision shouldn’t change the
well-foundedness of the resources that com-
mit to an earlier version of the ontology.

Nevertheless, even if we can extend an
ontology, its core should be stable. The core
is the portion of an ontology’s source code
that represents a theory with well-known
properties and is accepted as best fitting the
ontology’s concepts. The core should include
the top of the ontology (general concepts).
The top can be a standard proposal—for
example, SUMO (Suggested Upper Merged
Ontology; http://ontology.teknowledge.com).

From a logical perspective, robust ontol-
ogy should mean complete logical theory. We
might apply this definition in the context of the
full OWL (www.w3.org/TR/owl-features) or
at least for some coherent parts of an ontol-
ogy. However, this isn’t a local notion: minor
changes compromise logical completeness
in a dramatic way. Other logical notions, such
as categoricity, clash with natural logical
principles for database reasoning such as the
closed-world assumption or unique-names
principle.

Therefore, robustness should combine
both perspectives—the Semantic Web per-
spective and the logic perspective—along
with a notion of a clear (as opposed to a
messy) ontology. A messy ontology might
become the target of a cleaning process if
daily management of the ontology suggests
it. So, an ontology is robust if

• its core is clear and stable (except for
extensions),

• every model of its core exhibits similar

properties with regard to the core lan-
guage, and

• it can admit (minor) changes made out-
side the core without compromising core
consistency.

We understand similar properties as a set
of metalogical properties, so all models with
similar properties are essentially the same:
they can’t be distinguished by means of nat-
ural properties.

But you can’t understand robustness with-
out considering dynamic aspects. Mainly, we
regard robustness as a measure: evolution can
extend the core to a big portion of the ontol-
ogy, except for data. Evolution lets us locate
possible inconsistencies in the data, so the

problem begins to resemble integrity con-
straint checking.

In the example in figure 1, the Skolem
noise phenomenon suggests that we should
add to the ontology the interpretation of $f1
as the intersection of regions (when they
intersect). Thus, it’s advisable to evolve the
ontology to represent the behavior of the
intersection between spatial regions.

The dynamics of ontology evolution lead
us to adapt other ontologies to extend ours, or
generally to design systems for managing
multiple and distributed ontologies.10 This
question brings up another: how can we
design sound ontology mappings for auto-
mated reasoning?

Does ontology mapping mean 
theory interpretation?

The semantic heterogeneity of ontologies
is a major barrier to cleaning data. Ontology
mapping will become a key tool in hetero-
geneous and competitive scenarios, such as
in e-commerce, knowledge management in
large organizations, and—in the Semantic
Web—the usual extraction/transformation/

loading process11 for data cleaning. How-
ever, an ontology mapping’s logical—and
cognitive—effects on automated reasoning
aren’t clear. A logical perspective once again
leads to a rigid concept, interpretation among
theories. This is the most suitable for logical
automated reasoning, but this approach has
limited application. In practice, one solution
is to use contexts (or microtheories), as in the
Cyc (www.cyc.com) ontology. Other pro-
posals such as Context OWL12 might be use-
ful in controlling the expansion of anomalies
to the complete ontology.

Ontology mapping has limited usefulness.
At some point, intelligent KDB analysis aided
by an ATP will need a logical interpretation of
basic data-like integers (for example, when
we accept that number of parts is a positive
integer). Building an ontology on numeric
data and their properties isn’t easy. Even if
we have one, the ontology mapping can be
understood as a logical interpretation of an
arithmetic theory (remember that, in OWL,
mappings aren’t part of the language).
Because interpretation means, up to a point,
incorporating a logical theory about such data
into the target ontology, logical incomplete-
ness isn’t only assumed but unavoidable.
(Also remember that although OWL inte-
grates data types, it includes nothing about
integer arithmetic, for example.) We can tame
this phenomenon by syntactically restricting
queries, but the solution will be hard in any
case: extending OWL (regarding it as a logi-
cal theory) will add features for numerical-
data representation and reasoning. Moreover,
undecidability will be intrinsic to any lan-
guage with powerful features and more com-
plex tools. This is a definitive barrier to ontol-
ogy language design. We must find a way to
escape from this in practice.

Is there a model theory for the
Semantic Web?

At the top of the Semantic Web “cake”
proposed by Tim Berners-Lee, logic and
proof appear as the bases beneath trust (see
figure 2).13 Logical trust, in a broad sense, is
based on logical semantics, and this deals
with models and the definition of truth.
Ontology designers often forget about model-
theoretic analysis because they have a par-
ticular (real or intended) model in mind. A
well-known principle in knowledge repre-
sentation states that no language or KDB
exists that can faithfully represent the
intended world where we want to work; that
is, unintended models exist (see figure 3). In
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the Qualitative Spatial Reasoning field, this
principle turns into the poverty conjecture:
no purely qualitative, general-purpose kine-
matics exists. Therefore, no categorical
ontology exists for QSR.

One goal of logical-model theory is to study
all of a theory’s models, including the unin-
tended ones. This isn’t only a semantic basis
for good specification. It affects practical prov-
ing: the existence of unintended models is the
consequence of incompleteness, and vice
versa. For example, in figure 3 the existence
of a model in which A equals S implies that it
cannot be proved that Spain and the region
affected by the anticyclone are different.

We can combine model theory with other
features, especially of a linguistic nature. In
this way, we can specify nonlogical informa-
tion. However, the number of linguistic and
lexicographic problems that this option sup-
poses warns us to carefully explore this com-
bination. On the other hand, it’s not strange to
come up against inconsistent information in
a KDB on the Web, and in this case, model
theory is useless: there are no models.

How can we reason with
inconsistent information?

The larger the KDB, the less likely it will
be consistent. Logical inconsistency, one of
the main sources of distrust, is frequent
whenever a KDB has a great deal of custom
information (and whenever it’s a relatively
interesting part of the Web). Model search
(consistency-checking) systems can’t han-
dle big KDBs. Thus, we only have to par-
tially handle consistency analysis: if the
analysis refutes the KDB, it will be incon-
sistent. So, inconsistency turns out to be the
main anomaly (see the sidebar “The Main
Logical Anomaly: Inconsistency”).

If we accept having to work with incon-
sistencies, the goal is to design logical for-
malisms that limit the inconsistencies that
can be inferred from an inconsistent KDB.
One approach to acquiring trustworthy infor-
mation is to express in arguments the infor-
mation extracted from data.

An argument is simply a pair < S; fact >
in which S is a subset of the KDB that proves
a particular fact. We can consider an argu-
ment with an unacceptable conclusion to be
a report about an anomaly, and the cleaner
must find the reason for it. Any anomaly
warns us about a mistake, but the expert
decides which type of arguments to analyze.
However, the ARS offers more arguments
than human analysis can study. Although a

referee layer for ARS’s output could partially
solve the overspill of arguments, we must
design efficient criteria to discard the unin-
teresting ones, but this isn’t easy. There’s an
interesting hierarchy of arguments (based on
such first-order-logic notions as consistency
and entailment) that estimates, at least theo-
retically, each argument’s robustness.14

Is first-order logic the universal
provider for formal semantics?

First-order logic provides a formal KDB
verification framework in which we can
define some anomalies in specifications. We
can actually verify and revise ontology lan-
guages such as DAML+OIL (www.w3.
org/TR/daml+oil-reference) by translating
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Figure 2. The Semantic Web “cake” proposed by Tim Berners-Lee and colleagues, in
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specifications into first-order logic and then
applying an ATP.15 Researchers have also
investigated reasoning services for this class
of languages on the basis of their relation-
ship with description logics (a subset of first-
order logic).16 We select first-order logic as
a translation target because this gives us
strong reasoning methods for several sublog-
ics that expand the ontology language. In
addition, we have an ideal framework in
which to expand the expressivity of the lan-
guage itself. Others have proposed exten-
sions of the first-order logic language (such
as F-logic,17 which naturally solves problems
such as reification, a feature of RDF).

Modal logics for beliefs and knowledge
enrich the representation and reasoning with
mental attitudes. Mental attitudes don’t seem
adequate to be added to ontology reasoning,
but other intentional operators that are used

in logic programming for metareasoning
(such as Provable from Ontology O) might be inter-
esting to consider. But how?

For the time being, we tend to think of
ontologies as static theories—that is, a set of
axioms, separate from reasoning (or rules).
This option reduces the problem to investi-
gating which rule language is the best for
each purpose.18 But it doesn’t seem adequate
for verifying a KDB. Solving this limitation
for KDB cleaning tasks is advisable, and not
only by means of external reasoners. An
ontology should ontologically define its rea-
soning framework, or better, the ontology
itself should be a potential reasoner. We’ll
return to this question, and solution, later.

We carried out our data-cleaning experi-
ments in the field of qualitative spatial rea-
soning, where ontology design itself is a chal-
lenge. We used first-order logic as a language

so that we could focus on foundational rather
than representational issues. We also used
Otter (www-unix.mcs.anl.gov/AR/otter), a
powerful ATP based on resolution.19 Figure 4
shows a specific-purpose cleaning process. In
the figure, to represent real-world qualitative
information, the ontology expert determines
the key spatial concepts and roles. Choosing
the language induces a first qualitative repre-
sentation—a graph, in this case—of the real
model. The KDB associated with the repre-
sentation, along with the spatial ontology, is
cleaned by means of a cleaning agent.

Is there an ontology for
untrustworthy information?

As we mentioned earlier, an argument’s
existence enables us to locate and repair an
anomaly—if the argument points to one—by
means of expert analysis of its content. A deep
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The main drawback of many inconsistency-handling methods
is their computational complexity. Additionally, the relevant
role of ontologies in knowledge database (KDB) design for the
Semantic Web requires a revision of both classical database
semantics (which identify correct answers and logical conse-
quences) and the definition of consistency itself (focused on
integrity constraint checking). Following are some recent pro-
posals for inconsistency handling.

Paraconsistent logics
This solution attempts to control the undesirable (logical)

consequences we obtain from an inconsistent database.1 The
idea is to design inference rules that do not allow inconsistent
knowledge, even though the KDB might be inconsistent.

Nonrepairing methods
These preserve the information source and decide trueness

by analyzing the retrieved knowledge. Here are some recent
examples from the literature: 

• Establish a preorder on information sets that estimates
their plausibility. In this way, deduction procedures are
only applied on the KDB’s belief subsets that have been
selected according to the preorder.2

• Argument hierarchies classify arguments according to their
robustness with respect to other KDB subsets3 or their rela-
tionships with other arguments (for example, the argumen-
tative framework based on the defeating relationship4). See
elsewhere5 for an application to databases.

• Researchers have used contextualization, a classic idea in
artificial intelligence, to contextualize ontologies and data.6

Merging-oriented techniques
To handle inconsistencies through merging, we can

• design rules that enable the consistent fusion of jointly
inconsistent information,7 or

• develop solutions provided by the theory of merging data-
bases.8

Measuring anomalies
Another option is to estimate the anomaly. For example, we

can do the following:

• Evaluate by means of paraconsistent logics.9

• Measure inconsistent information by means of measures for
semantic information, which estimate the information that
the KDB gives on the model that it represents. Measures
exist for working with inconsistencies.10

Repairing techniques
Repairing KDBs has two main drawbacks: the complexity of

revising the full KDB, and the possible discarding of inconsis-
tent but potentially useful data. So, it seems advisable to focus
repair on relatively small data sets. The revision of ontologies 
is essentially different, because these represent a key orga-
nization of the owner’s knowledge, and minor changes can
produce unexpected and dangerous anomalies. Solutions
include the following:

• The Fellegi-Holt method, which many government agencies
have used in the past, is a safe logical method.11 It’s based
on searching all deducible requirements to decide which
fields to change to correct an incorrect record.

• Once we’ve defined the notion of database repair in a logical
form, we can simulate the definition’s entailment component
using calculus—for example, through the tableaux method.12

• We can use consistent querying to repair databases: the
answer itself drives the repair. For example, by splitting the
integrity constraints according to the character of the nega-
tion involving each constraint, we can produce consistent
answers and repair the database.13

• We can enforce database consistency. The aim is to systemat-
ically modify the database to satisfy concrete integrity con-

The Main Logical Anomaly: Inconsistency



analysis of the arguments reported by an ARS
classifies them according to their trustworthi-
ness. So, an argument hierarchy is a first step
toward an ontology of trust. But we also need
to clarify the ARS assistant’s operational fea-
tures. The autonomous behavior that we
expect of the automated argument searcher
can be slanted. Researchers could learn much
more about this topic using the automated-rea-
soning field as background.

The task of recognizing fraudulent infor-
mation will be arduous; it represents a differ-
ent problem. If an ontology represents a fraud-
ulent world (an unintended model of the user’s
knowledge, which is particularly dangerous),
the arguments reporting fraudulent informa-
tion don’t show anomalies. To make matters
worse, fraudulent ontologies might use lin-
guistic features to hide information. This takes
the question beyond our interest: fraud, by def-

inition, can’t have logical legitimacy. One
solution might be to combine users’trustwor-
thiness in other users.20 We might also be able
to solve the problem of recognizing fraudu-
lent information with a precise analysis of
mental attitudes such as beliefs, desires, or
intentions to specify the phenomenon in the
case of data-mining agents.

Adding mental attitudes to data
mining and cleaning

In a scenario with inconsistent informa-
tion or several cleaning agents at work, is it
necessary to add an intentional level to the
logical knowledge? We’ve already com-
mented that adding mental attitudes to the
ontology isn’t advisable. But in a multiagent-
system setting, the specification of knowl-
edge extracted from inconsistent information
is unavoidable. In fact, the specifications of

agent communication languages such as
FIPA-ACL (www.fipa.org/specs/fipa00037/
SC00037J.pdf) use mental attitudes. A mul-
tiagent data-mining system should manage
this kind of information.

To avoid adopting mental attitudes when
you work with simple information items, you
might be able to design fusion rules based on
the nature of information.21 This option
might need to preprocess data from hetero-
geneous databases. Also, you must extract
and translate data (through ontology map-
ping) during cleaning runtime, making it dif-
ficult to achieve acceptable response times,
as occurs in classical data cleaning. But the
preprocessing in KDB cleaning has another
purpose: it’s possible for the system to trig-
ger some rules to add new data, transform-
ing the KDB’s data source into a consistent
instance of the KDB target.
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straints. A promising method uses greatest consistent
specialization (adapting the general method, which might
be undecidable).14

Consistent answering without repairing
We can also transform the query to obtain consistent answers

or use paraconsistent inference.15

Preserving consistency
The idea here is to update the KDB preserving its consistency

(in a wide sense, not only the satisfaction of integrity constraints).
We also must prove the method’s consistency and some level
of completeness.16
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Is it possible to preprocess data
with respect to an ontology?

An interesting aspect of the cleaning
process appears when KDB programmers
decide which of an ontology’s main roles and
concepts they want to focus the cleaning on
(the spatial-abstraction step in figure 4). Does
Skolem noise mean that the programmers
don’t know the ontology that the KDB builder
is implicitly or unconsciously using? Gener-
ally, no. It might only suggest the need to pre-
process the knowledge, sometimes applying
simple rules associated with the ontology. One
option in preprocessing full databases is to
extend them with new data produced by apply-
ing simple rules, designed from the ontology,
that enable the programmers to achieve con-
sistent translations.1

A proposal: Extend OWL 
to ROWL

We hope to solve some of these challenges
by designing a language, which we might call
ROWL (a Reasonable Ontology Web Lan-
guage). We don’t describe a formal language
here; we’ll just indicate what that language
might look like in its early development and

how it could satisfy some of the challenges.
The idea stems from the need to attach (spe-
cialized) certified logical inference to an ontol-
ogy—that is, ontological information about
how to reason with information. To do this,
we should add new features to OWL to spec-
ify what type of reasoning and which ARS we
need to work with the OWL ontology (also
keeping in mind that the ontology is optimized
to reason with these new features). 

The ROWL design
The idea revolves around a certified

generic framework, which simplifies the
design of a certified ad hoc reasoner to pro-
vide ATP features that the ontology must sup-
ply.22 In other words, ROWL is OWL plus a
CGF. An ontology that accepts a reasoner fit-
ting into this framework must

• specify simple computation rules (to drive
the deduction) and simple representation
rules (to normalize formulas),

• measure functions on formulas (to prove
the halting of deduction methods), and 

• model functions (to supply models in
some basic cases).

The CGF was programmed in ACL2 (www.
cs.utexas.edu/users/moore/acl2), which is
both a programming language in which you
can model computer systems and a tool to
help you prove a model’s properties. The
ATP obtained is thus sound, complete, and
formally verified by ACL2.

The CGF framework22—which can be
executed because it produces a Common
Lisp program—can synthesize satisfiability
(SAT) provers, the most important compo-
nent in many automated-reasoning-based AI
systems. (Researchers are still searching for
a complete, truly polynomial-time Boolean
SAT solver, or a proof that such an algorithm
does not exist. However, several ways to
solve satisfiability in polynomial time for
practical purposes exist.) However, these
synthesized SAT provers currently perform
far worse than any state-of-the-art SAT
prover. Obtaining better provers using more
efficient data structures is a future aim.

ROWL should have features that show
links to sources where the elements that spec-
ify the reasoning with the ontology (mea-
surement, computation rules, and so on) are
defined, letting users refine or change the
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deduction method by slightly changing the
KDB.

Generalizing this framework to other
ARSs will be interesting. Of course, before
determining ROWL’s key features, we must
design an automated-reasoning ontology.
Projects to build such an ontology already
exist—for example, MathBroker (www.risc.
uni-linz.ac.at/projects/basic/mathbroker)
and MONET (http://monet.nag.co.uk/cocoon/
monet/index.html).

ROWL’s advantages
The definitive advantage of a language such

as ROWL is that it would let us design gen-
eral-purpose cleaning agents as opposed to
specific-purpose ones based on wrapper tech-
nology. Such agents would adopt both the ATP
synthesized from the ROWL ontology’s infor-
mation as a component, and the agent’s behav-
ior scheme, where modules for repairing

anomalies can be implemented (see figure 5).
This proposal is only the first step—much

research remains to be done. First, we must
perform a complete analysis of the relation-
ships between ACL2 logic (a computational
logic closer to a quantifier-free first-order
logic accepting some amount of induction)
and description logics. But how does this
proposal solve any of the challenges we out-
lined earlier? Basically, it does so by setting
standards to attach additional information to
the OWL ontology:

• If we assume we’re working with a poor
ontology (the second challenge), we can
request other explicit, specified ROWL fea-
tures with links to explicit information about
some of the anomalies the ARS would find.

• Ontology mapping (the fourth challenge)
can be certified to some extent by the ARS
associated with the ontology target: trust is

augmented if the ARS certifies the trans-
lation of essential properties into concepts
of ontology source. 

In the concrete example of ACL2, exploiting
the certified arithmetic reasoning embedded
in the ACL2 system itself would be
extremely interesting: we could add arith-
metic reasoning about data to OWL (through
logical interpretation in ACL2 logic).

• Evidence of the existence of undesirable
models (the fifth challenge) may be their
unprovability using the recommended ARS
of basic theorems on ontology concepts.

• If we as ontology designers think that
inconsistencies will probably appear (the
sixth challenge), we can associate, in the
earlier stages of ontology evolution, a rea-
soning model based on arguments. After
that, we could use a standard ARS, chang-
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ing only the corresponding links in the
ROWL ontology. In this way, the ontology
will benefit from state-of-the-art certified-
reasoning models.

This process will certify the framework.
Thus, the ATP embedded in the cleaning

agent will be correct and won’t have anom-
alous behavior.

A ROWL ontology cleaning
session

Let’s see how a cleaning session (for con-
sistency analysis) on a ROWL ontology

would run. Consider the ROWL ontology in
figure 6 (Tarzan is a carnivore and an herbi-
vore because he satisfies both definitions. But
by definition, this isn’t possible.) Figure 6a
shows the four ingredients needed for syn-
thesizing an SAT solver (in this case, it syn-
thesizes the classic Davis-Putnam-Loveland-
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Figure 6. A Reasonable Ontology Web Language (ROWL) ontology: (a) the four ingredients needed for synthesizing an SAT solver
and two classic database assumptions, the unique-names principle and the domain closure axiom; (b) an OWL ontology; and 
(c) propositional transformation by binding variables.

<rowl:Reasoner 
rdf:ID=“#Davis-Putnam-SATSOLVER”>

<rowl:ComputationRule
rdf:resource=“#DP-comp-rule”/>

<rowl:RepresentationFunction
rdf:resource=“#DP-repr”/>

<rowl:MeasureFunction
rdf:resource=“#DP-measure”/>

<rowl:ModelFunction
rdf:resource=“#DP-models”/>

</rowl:Reasoner>

<rowl:Assumption
rdf:resource=“#Unique-names-principle”/>

<rowl:Assumption
rdf:resource=“#Domain-closure-principle”/>

(a)

<owl:Class rdf:ID=”Herbivore”>
<rdfs:Comment> herbivores are exactly those animals that eat some 
plant</rdfs:Comment>

<owl:equivalentClass>
<owl:intersectionOf rdf:parsetype=”Collection”>

<owl:Class rdf:about=”animal”>
<owl:Restriction>

<owl:onProperty rdf:resource=#eats”/>
<owl:someValuesFrom rdf:resource=#plant”/>

</owl:Restriction> 
</owl:intersectionOf> 

</owl:equivalentClass>
</owl:Class>

<owl:Class rdf:ID=”Carnivore”>
<rdfs:Comment>carnivores are animals that are not herbivores and they eat
animals </rdfs:Comment>

<owl:disjointWith rdf:resource=”#Herbivore”>
<owl:intersectionOf rdf:parsetype=”Collection”>

<owl:Class rdf:about=”animal”>
<owl:Restriction>

<owl:onProperty rdf:resource=#eats”/>
<owl:someValuesFrom rdf:resource=”#animals”>

</owl:Restriction>
</owl:intersectionOf>

</owl:Class>

<Carnivore rdf:ID=”Tarzan”>
<eats rdf:resource=”Pumbaa”>
<eats rdf:resource=”potato”>
</Carnivore>

<Animal rdf:ID=”Pumbaa”>
<eats rdf:resource=”potato”>
</Animal>

<Plant rdf:ID=”potato”>
(b)

(<-> carnivore-potato
(& (& (- herbivore-potato) animal-potato)
(/ (& eats-potato-potato animal-potato)
(/ (& eats-potato-pumbaa animal-pumbaa)
(& eats-potato-tarzan animal-tarzan)))))

(<-> carnivore-pumbaa
(& (& (- herbivore-pumbaa) animal-pumbaa)
(/ (& eats-pumbaa-potato animal-potato)
(/ (& eats-pumbaa-pumbaa animal-pumbaa)
(& eats-pumbaa-tarzan animal-tarzan))))

(<-> carnivore-tarzan
(& (& (- herbivore-tarzan) animal-tarzan)
(/ (& eats-tarzan-potato animal-potato)
(/ (& eats-tarzan-pumbaa animal-pumbaa)
(& eats-tarzan-tarzan animal-tarzan)))

(<-> herbivore-potato
(& animal-potato
(/ (& eats-potato-potato plant-potato)
(/ (& eats-potato-pumbaa plant-pumbaa)
(& eats-potato-tarzan plant-tarzan))))

(<-> herbivore-pumbaa
(& animal-pumbaa
(/ (& eats-pumbaa-potato plant-potato)
(/ (& eats-pumbaa-pumbaa plant-pumbaa)
(& eats-pumbaa-tarzan plant-tarzan))))

(<-> herbivore-tarzan
(& animal-tarzan
(/ (& eats-tarzan-potato plant-potato)
(/ (& eats-tarzan-pumbaa plant-pumbaa)
(& eats-tarzan-tarzan plant-tarzan))))

plant-potato
eats-pumbaa-potato
eats-tarzan-pumbaa
eats-tarzan-potato
herbivore-pumbaa
carnivore-tarzan

(c)



Longeman procedure for SAT and two clas-
sic database assumptions: the unique-names
principle and the domain closure axiom. Fig-
ure 6b shows an OWL ontology. Figure 6c
shows the ontology’s transformation into a
set of propositional formulas through the
binding of variables.

To synthesize and verify the SAT solver,
the CGF essentially takes as input the ele-
ments defined in figure 6a; its runtime is 0.28
seconds. Finally, the cleaning agent must
only check satisfiability. In this case, it out-
puts the following:

(generic-sat-davisputnam
(build-rowl-example1 
(potato pumbaa tarzan)))
; real time : 0.020 secs
; run time : 0.020 secs
; NIL

A lthough the challenges we’ve dis-
cussed represent only a partial view,

they affect every phase of typical data clean-
ing: data analysis, definition of mapping
rules, verification, transformation, and back-
flow of cleaning data.11 From these founda-
tional issues, we can derive many of the prob-
lems in real-life cleaning scenarios.

Many database designers might not cele-
brate the marriage of data and ontology, and
some kind of classical data cleaning, com-
bined with automated-reasoning engineer-
ing, could remain the sole option. To sum up,
Semantic Web cleaning agents raise a series
of challenges that could overwhelm logic-
based agents and classical data-cleaning
techniques if they are not combined and
implemented together. 
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