Teoría de la Complejidad Computacional

Tema 2: Modelos de Computación Máquinas de Turing

Mario de J. Pérez Jiménez

Grupo de Investigación en Computación Natural Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla

marper@us.es

http://www.cs.us.es/~marper/

Máster Universitario en Matemáticas
Curso 2019-2020

Índice

- * Modelos de computación.
- Máquinas de Turing deterministas.
 - Sintaxis.
 - Semántica.
 - MTDs de decisión.
 - MTDs que resuelven problemas de decisión.
 - MTDs que calculan funciones.
- * Máquinas de Turing deterministas con k cintas.
- * Máquinas de Turing no deterministas.

Modelos de computación

Formalización del concepto de procedimiento mecánico.

- * Sintaxis.
- * Semántica.

En un modelo de computación se tiene:

- * Procedimiento mecánico.
- **★ Funciones computables.**
- * Máquinas.

De ahi que existan modelos de computación:

- Orientados a programas (Modelo GOTO, modelo WHILE, etc.)
- Orientados a funciones (Funciones recursivas, λ -calculables, etc.)
- Orientados a máquinas (Máquinas de Turing, de Post, URM, etc.)

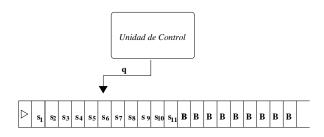
Máquina de Turing determinista: Sintaxis

Es una tupla, $M = (Q, \Sigma, \delta, q_0, F, B, \triangleright)$:

- Q es un conjunto finito no vacío (estados).
- Σ es un alfabeto (de trabajo de la máquina) tal que $\Sigma \cap Q = \emptyset$.
- δ es una aplicación (función de transición) de $(Q F) \times \Sigma$ en $Q \times \Sigma \times \{0, 1, -1\}$ tal que:
 - * Si $\delta(q, \triangleright) = (q', s', x)$ entonces $s' = \triangleright \land x = 1$.
- $q_0 \in Q$ (estado inicial).
- $F = \{q_h, q_y, q_n\} \subseteq Q \{q_0\}$ (estados finales).
- $B \in \Sigma$ (símbolo blanco).
- $\triangleright \in \Sigma$ (primer símbolo) verificando que $\triangleright \neq B$.

Informalmente, una máquina de Turing determinista M consta de:

- Una cinta infinita estructurada en casillas enumeradas (con primera casilla), cada una conteniendo un símbolo del alfabeto de trabajo.
- Un cabezal de trabajo lector/escritor que inspecciona el contenido de una casilla (lee), puede cambiar su contenido por otro símbolo (escribe) y se desplaza a lo largo de la cinta (una casilla a la derecha, una casilla a la izquierda o se queda en el mismo sitio).



Si $\delta(q,s)=(q',s',x)$, diremos que M pasa de q a q', sustituye s por s' y se desplaza según el valor de $x\in\{0,1,-1\}$.

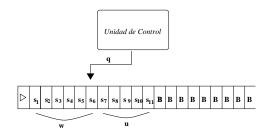
Máquina de Turing determinista: Semántica

Configuración (descripción instantánea) de una máquina de Turing M:

* Una terna (q, w, u) tal que $q \in Q, w \in \Sigma^*$ y $u \in \Sigma^*$.

Una configuración (q, w, u) puede ser interpretada como sigue:

- \star q es el estado actual en que se encuentra la máquina M.
- $\star \triangleright \mathbf{w} \mathbf{u}$ es la palabra *escrita* en la cinta de la máquina M.
- ★ Si w no es la cadena vacía, la máquina M analiza el último símbolo de w. Caso contrario, analiza el símbolo > de la primera casilla.



Máquina de Turing determinista: Semántica

Sea C = (q, w, u) una configuración de M.

- * Si $q = q_0$, w es la cadena vacía λ y $u \in (\Sigma \{B\})^*$: C es <u>la</u> configuración inicial con dato de entrada u y notaremos $C = I_u$.
- * Si $q \in F$: C es una configuración de parada.
- * Si $q = q_v$: C es una configuración de aceptación.
- * Si $q = q_n$: C es una configuración de rechazo.

Configuración siguiente: Sea $(q, w_1 \dots w_{r-1} w_r, u_1 u_2 \dots u_s)$ una configuración de M.

* Si $\delta(q,w_r)=(q',w_r',-1)$, diremos que la configuración siguiente de $(q,w_1\ldots w_{r-1}\stackrel{\downarrow}{w_r},\stackrel{\downarrow}{u_1u_2\ldots u_s})$

es
$$(q', w_1 \cdots w_{r-1}^{\downarrow}, w'_r u_1 u_2 \dots u_s)$$
.

* Si $\delta(q, w_r) = (q', w_r', +1)$, diremos que la configuración siguiente de $(q, \underbrace{w_1 \ldots w_{r-1} \stackrel{\downarrow}{w_r}}, \underbrace{u_1 u_2 \ldots u_s})$

es
$$(q', \underbrace{w_1 \dots w_{r-1} w_r' \overset{\downarrow}{u_1}}, \overbrace{u_2 \dots u_s}).$$

* Si $\delta(q, w_r) = (q', w'_r, 0)$, diremos que la configuración siguiente de $(q, w_1 \dots w_{r-1} \overset{\downarrow}{w_r}, u_1 u_2 \dots u_s)$ es

$$(q, w_1 \ldots w_{r-1} \overset{\downarrow}{w'_r}, \overbrace{u_1 u_2 \ldots u_s}).$$

Máquina de Turing determinista: Semántica

Una computación \mathcal{C} de una MT es una sucesión (finita o infinita) de configuraciones (C_0, C_1, \dots, C_r) , $r \in \mathbb{N} \cup \{\infty\}$, tal que

- * C_0 es una configuración inicial (asociada a un dato de entrada $u \in (\Sigma \{B\})^*$).
- * Para cada i < r, la configuración C_{i+1} es <u>la</u> configuración siguiente de C_i .
- * La computación $\mathcal C$ es de parada si
 - $r \in \mathbf{N}$ y la última configuración C_r es (q, λ, u') , siendo $q \in \{q_y, q_n, q_h\}$ y $u' \in (\Sigma \{B\})^*$.
 - \star Si $q=q_y$, diremos que M acepta el dato u y escribiremos M(u)= yes.
 - * Si $q = q_n$, diremos que M rechaza el dato u y escribiremos M(u) = no.
 - * Si $q=q_h$, diremos que el <mark>resultado</mark> de la computación es $u'\in (\Sigma-\{B\})^*$ y escribiremos M(u)=u'.
- * Si la computación C es de parada, escribiremos $M(u) \downarrow$
- st Si la computación ${\mathcal C}$ no es de parada, escribiremos $M(u)\uparrow$

Decisión en una MTD

Una MTD es de decisión si sus estados finales son q_y y q_n .

Sea L un lenguaje sobre el alfabeto $\Sigma - \{B\}$.

Si M es una MTD de decisión, diremos que:

- * M decide el lenguaje L si y solo si para cada $u \in (\Sigma \{B\})^*$ se verifica:
 - Si $u \in L$, entonces M(u) = yes (el estado de la configuración de parada es q_y).
 - Si $u \notin L$, entonces M(u) = no (el estado de la configuración de parada es q_n).

Ejemplo de una MTD de decisión

$$Q = \{q_0, q_1, q_2, q_1', q_2', q_3, q_h, q_y, q_n\}; \ \Sigma = \{0, 1, B, \triangleright\}$$

$(Q - F) \times \Sigma$	$Q \times \Sigma \times \{0, 1, -1\}$
$(q_0, 0)$	$(q_1, \triangleright, 1)$
$(q_0, 1)$	$(q_2, \triangleright, 1)$
(q_0, B)	$(q_y, B, 0)$
(q_0, \triangleright)	$(q_0, \triangleright, 1)$
$(q_1, 0)$	$(q_1, 0, 1)$
$(q_1, 1)$	$(q_1, 1, 1)$
(q_1, B)	$(q'_1, B, -1)$
$(q_2, 0)$	$(q_2, 0, 1)$
$(q_2, 1)$	$(q_2, 1, 1)$
(q_2, B)	$(q'_2, B, -1)$
$(q'_1, 0)$	$(q_3, B, -1)$
$(q_1^7, 1)$	$(q_n, 1, 0)$
$(q_1^{\overline{I}}, \triangleright)$	$(q_V, B, 1)$
$(q_2^7, 0)$	$(q_n, 1, 0)$
$(q_2^7, 1)$	$(q_3, B, -1)$
$(q_2^{\overline{\prime}}, \triangleright)$	$(q_V, \triangleright, 1)$
$(q_3, 0)$	$(q_3, 0, -1)$
$(q_3, 1)$	$(q_3, 1, -1)$
(q ₃ , ⊳)	$(q_0, \triangleright, 1)$

MTD's que calculan funciones

- * Una MTD, M, calcula una función parcial $f: (\Sigma \{B\})^* \to \Sigma^*$ si y solo si para cada $u \in (\Sigma \{B\})^*$ se tiene que:
 - * $M \downarrow u$ si y solo si $f(u) \downarrow$.
 - * Si $M \downarrow u$ entonces M(u) = f(u).

Un ejemplo: $Q = \{q_0, q_1, q_h, q_y, q_n\}; \ \Sigma = \{0, 1, B, \triangleright\}$

$(Q - F) \times \Sigma$	$Q \times \Sigma \times \{0, 1, -1\}$
$(q_0, 0)$	$(q_0, 0, 1)$
$(q_0, 1)$	$(q_0, 1, 1)$
(q_0, B)	$(q_1, B, -1)$
(q_0, \triangleright)	$(q_0, \triangleright, 1)$
$(q_1, 0)$	$(q_h, 1, 0)$
$(q_1, 1)$	$(q_1, 0, -1)$
(q_1, B)	$(q_1, B, 0)$
(q_1, \triangleright)	$(q_h, \triangleright, 1)$

Hallemos M(01)

- $1. \stackrel{q_0}{\triangleright} 0.1 B.$
- $2. > 0^{q_0} 1 B.$
- 3. \triangleright 0 1 B.
- 4. > 0.1 R

- 5. \triangleright 0 1 B.
- - 7.⊳ ï 0*B*

MTD's que resuelven problemas

¿Cómo resolver un problema X?

- * Sea X un problema de decisión.
 - * Una MTD resuelve X si y solo si <u>decide</u> el lenguaje asociado a X.
- * Sea X un problema caracterizado por una función total $f_X: L_X \to \Sigma^*$.
 - * Una MTD resuelve X si y solo si <u>calcula</u> la función f_X .

Máquina de Turing determinista con *k* cintas

- * En cada instante la máquina está en un estado.
- \star Consta de k cintas, infinitas a la derecha con primera casilla.
- ★ Cada cinta tiene un cabezal lector/escritor que en cada instante:
 - Analiza una casilla.
 - Puede reescribir sobre la casilla.
 - Puede cambiar de estado (el <u>mismo</u> en todas las casillas).
 - Se puede desplazar: +1, -1, 0.

- ★ Para realizar una computación con entrada $u \in \Sigma^*$:
 - Se registra la entrada $u \in \Sigma^*$ en la primera cinta.
 - Las restantes cintas están en blanco.
 - Todos los cabezales apuntan a la primera casilla.
 - La máquina está en el estado inicial.
 - La función de transición actúa sobre cada cinta.

El resultado de una computación de parada es:

- yes, si el estado de la configuración de parada es q_V.
- no, si el estado de la configuración de parada es q_n.
- * El contenido de la cinta k-ésima, si el estado de la configuración de parada es q_h.

Teorema: Para cada MTD, M, $\underline{con\ k\ cintas}$ existe una MTD, M', con $\underline{una\ cinta}$ tal que M(w) = M'(w), para cada entrada w.

¿Qué peaje se ha de pagar para "pasar" de una MTD con k cintas a una MTD con una sóla cinta que sea "equivalente" a ella?

Máquina de Turing no determinista

Es una tupla, $M = (Q, \Sigma, \delta, q_0, F, B, \triangleright)$, en donde:

- Q es un conjunto finito no vacío (estados).
- Σ es un alfabeto (de trabajo de la máquina), $Q \cap \Sigma = \emptyset$.
- $\delta: (Q F) \times \Sigma \to \mathbf{P}(Q \times \Sigma \times \{0, 1, -1\})$ (función de transición).
- $q_0 \in Q$ (estado inicial).
- $F = \{q_h, q_y, q_n\} \subseteq Q \{q_0\}$ (estados finales).
- $B \in \Sigma$ (símbolo blanco)
- $\triangleright \in \Sigma$ (primer símbolo), $\triangleright \neq B$.

MTD versus MTND

Es una tupla $M = (Q, \Sigma, \delta, q_0, F, B, \triangleright)$:

Máquina de Turing determinista

- * Q es un conjunto finito no vacío (estados).
- * Σ es un alfabeto (*de la máquina*), $\Sigma \cap Q = \emptyset$.

•
$$\delta: (Q - F) \times \Sigma \to Q \times \Sigma \times \{0, 1, -1\}$$

- $\star q_0 \in Q$ (estado inicial).
- $\star F = \{q_h, q_v, q_n\} \subseteq Q \{q_0\}$ (estados finales).
- $\star B \in \Sigma$ (símbolo blanco).
- \star ▷ ∈ Σ (primer símbolo), ▷ \neq B.

Máquina de Turing no determinista

- * Q es un conjunto finito no vacío (estados).
- \star Σ es un alfabeto (de la máquina), $Q\cap \Sigma=\emptyset.$
- $\delta: (Q F) \times \Sigma \to \mathbf{P}(Q \times \Sigma \times \{0, 1, -1\})$
- $\star q_0 \in Q$ (estado inicial).
- * $F = \{q_h, q_y, q_n\} \subseteq Q \{q_0\}$ (estados finales).
- $\star B \in \Sigma$ (símbolo blanco).
- \star ▷ ∈ Σ (primer símbolo), ▷ \neq B.

Máquina de Turing no determinista

Los conceptos de d.i. y computacion en MTNDs se definen de manera similar a como se hizo con las MTDs.

- Una d.i. de una MTND puede tener más de una d.i. siguiente.
- Dada una MTND, M, y un dato de entrada u pueden existir muchas computaciones de M sobre u.
- Toda MTD es, en particular, una MTND.
- Una MTND de decisión es aquella cuyos estados finales son {q_y, q_n}.

Decisión en una MTND

Sea L un lenguaje sobre el alfabeto $\Sigma - \{B\}$.

Si M es una MTND de decisión, diremos que:

- * M decide el lenguaje L si y solo si para cada $u \in (\Sigma \{B\})^*$ se verifica:
 - $u \in L$ si y sólo si existe, al menos, una computación de M(u) tal que para y devuelve yes.

Teorema: Sea L un lenguaje tal que una MTND, M, decide L. Entonces existe otra MTD, M', con <u>tres cintas</u> que también decide L (ver **ANEXO**).

¿Qué peaje se ha de pagar para "pasar" de una MTND que decide L a una MTD que también decide L?

Una MTND resuelve un problema de decisión X si y solo si decide el lenguaje asociado a X.

ANEXO

Teorema: Toda MTND puede ser simulada por una MTD con tres cintas.

Idea de la demostración:

Sea M una MTND (p: número máximo de elecciones no deterministas en M).

Para cada entrada u de M se considera el árbol de computación T_u asociado:

- ★ La raíz es la configuración inicial asociada a u.
- Los nodos son las distintas configuraciones.
- * Existe un arco de C_1 a C_2 si y solo si existe una transición en M de C_1 a C_2 .

Se simulará el árbol de computación T_u mediante un recorrido en anchura.

- * En primer lugar, todas las configuraciones obtenidas al ejecutar **un** paso.
- ★ En primer lugar, todas las configuraciones obtenidas al ejecutar **dos** pasos.
- * Y así sucesivamente.

Una dirección es una cadena del alfabeto $\Gamma_p = \{1, \dots, p\}$

- ★ Cada nodo de T_u tiene asociada unívocamente una dirección (*válidas*).
- * Existen direcciones que no se corresponden con ningún nodo (no válidas).

Las cadenas de Γ_P^* se ordenan lexicográficamente, según su longitud.

Descripción informal de una MTD, M', con tres cintas que simula a M:

- ★ Cinta 1: de entrada.
- * Cinta 2: de simulaciones.
- * Cinta 3: de direcciones.

Un algorimo que implementa una MTD, M', es el siguiente:

- 1. Inicialmente, la cinta 1 contiene a u y las cintas 2 y 3 están vacías
- Colocar en la cinta 3 la primera cadena de Γ_P*
- 3. Borrar la cinta 2, y copiar la cinta 1 en la cinta 2
- Usar la cinta 2 para simular la parte de la computación correspondiente a la cadena de Γ^{*}_P que aparece en la cinta 3. Para ello:
 - ★ Se analiza el primer símbolo de la cadena de la cinta 3.
 - * (*) Si es válido, entonces
 - Realizar la correspondiente elección no determinista
 - Si ha llegado a una configuración de aceptación, entonces aceptar y terminar
 - Si no,
 - si queda algún símbolo por analizar en la cinta 3, elegir el siguiente e ir a (*)
 - si no, ir al paso 5
 - si no es válido, ir al paso 5
- 5. Reemplazar la cadena de la cinta 3 por la siguiente cadena.
 - * Si no hay siguiente cadena, entonces terminar
- Ir al paso 3.

