|  
      
     | 
     
Visiones generales del Razonamiento Automático
- J.M. Aransay y C. Domínguez. 
    Demostración asistida por ordenador.
 
- A. Asperti. Automatic verification and interactive theorem proving.
 
- A. Asperti. A survey on interactive theorem proving.
 
- J. Avigad. Formal verification, interactive theorem proving, and automated reasoning.
 
- J. Avigad. Interactive theorem proving, automated reasoning, and mathematical computation. ICERM, 14 de diciembre de 2012.
 
- J, Avigad. Automated reasoning for the working mathematician.
 
- J. Avigad, J. Harrison. Formally verified Mathematics.
 
- H. Barendregt y F. Wiedijk. The challenge of computer mathematics.
 
- K. Buzzard. The future of mathematics?
 
- C.S. Calude y C. Müller Formal proof: reconciling correctness and understanding.
 
- R. David. Peut-on faire des Mathématiques avec un ordinateur?
 
- R. David y C. Raffalli. Peut-on avoir confiance en l’informatique?
 
- M. Davis. The early history of automated deduction.
 
- J.P. Delahaye Du rêve à la réalité des preuves. Interstices, 8 de julio de 2012.
 
- J. Germoni Coq et caractères: Preuve formelle du théorème de Feit et Thompson. Images des Mathématiques, CNRS, 23 de noviembre de 2012.
 
- H. Geuvers Proof assistants: History, ideas and future. Sadhana, Vol. 34-1, pp. 3-25, février 2009.
 
- H. Geuvers. Can the computer really help us to prove theorems?
 
- G. Gonthier The four-color theorem. Notices of the AMS, Vol. 55, n° 11, pp. 1382-1393, 2008.
 
- T. Hales. Formal proof. Notices of AMS, Vol. 55, N. 11 (2008) pp. 1370-1380.
 
- J. Harrison. A short survey of automated reasoning. Lecture Notes in Computer Science, Vol. 4545, pp. 334-349, 2007.
 
- J. Harrison. Formal proof: Theory and practice. Notices of the AMS, Vol. 55, N. 11 (2008) p.1395-1406.
 
- J. Harrison, J. Urban y F. Wiedijk History of interactive theorem proving.
 
- A. Koutsoukou-Argyraki. Formalising Mathematics-in praxis; A mathematician's very first experiences with Isabelle/HOL].
 
- G. Kolata. Computer math proof shows reasoning power. The New York Times, 10 de diciembre de 1996.
 
- A. Mahboubi Calcul formel et preuves formelles.
 
- A. Mahboubi. Machine-checked mathematics.
 
- A. Mahboubi. Un ordinateur pour vérifier les preuves mathématiques.
 
- D. MacKenzie Computers and the sociology of mathematical proof.
 
- C. Nalon. Machine-oriented reasoning.
 
- J. Narboux. Les assistants de preuve, ou comment avoir confiance en ses démonstrations.
 
- L.C. Paulson. Proof assistants: from symbolic logic to real mathematics?
 
- L.C. Paulson, T. Nipkow y M. Wenzel. From LCF to Isabelle/HOL.
 
- T. Ringer et als. QED at large: A survey of engineering of formally verified software.
 
- P. Schnider. An introduction to proof assistants.
 
- J. Schöpf y S. Widauer History of interactive theorem proving.
 
- F.R. Villatoro. La demostración matemática más larga.
 
- F. Wiedijk Formalizing the «top 100» of mathematical theorems.
 
- F. Wiedijk Formal proof - Getting started. Notices of the AMS, Vol. 55, n° 11, pp. 1408-1414, 2008.
 
- F. Wiedijk, The QED manifesto revisited. Studies in Logic, Grammar and Rhetoric, Vol. 10(23), pp. 121-133, 2007.
 
 
Referencias sobre Isabelle/HOL
- B. Blumson 
   
   Isabelle for philosophers.
 
- B. Grechuk 
    
    Isabelle primer for mathematicians.
 
- T. Nipkow 
    
    Programming and proving in Isabelle/HOL.
 
- T. Nipkow, M. Wenzel y L.C. Paulson 
    
    A proof assistant for higher-order logic.
 
- A. Steen 
    
    Mapping of ND proof templates to Isabelle formalization.
 
- 
    Isabelle/HOL — Higher-Order Logic.
 
- M. Wenzel 
    
    The Isabelle/Isar Reference Manual.
 
- M. Wenzel 
    
    The Isabelle/Isar quick reference.
 
- J. Siek 
    
    Quick Reference for Isabelle/Isar Propositional Logic.
 
- J. Siek 
    
    Quick Reference for Isabelle/Isar More Proof Techniques.
 
- J. Siek 
    
    Quick Reference for Isabelle/Isar First-Order Logic.
 
- 
    Tutorials and manuals for Isabelle.
 
 
Bibliotecas de ejemplos de verificación
- 
    Archive of Formal Proofs.
 
- 
    Formalizing 100 Theorems.
 
- 
    Gallery of verified programs.
 
- 
    Larry Wos' Notebooks.
 
- 
    The TPTP Problem Library for Automated Theorem Proving.
 
- 
    The 1st Verified Software Competition.
 
- 
    The 2nd Verified Software Competition.
 
- 
    VerifyThis (A collection of verification benchmarks).
 
 
     |